SPIR.

a data analysis program

Version 5.3
January 2012

User’s Guide

Contents

Program Description

1.1 Example Splat! Session

1.2 Program Uses

1.3 Program Organization
1.3.1 Command Line Interpreter
1.3.2 Data Storage Arrays & Internal Flags

Command Overview

2.1 Entering Data and Moving it Around
2.1.1 Fileinputo
2.1.2 Keyboard Entry
2.1.3 Creating Data from a Function
2.1.4 Moving Data Around

2.2 Analyzing Data

2.3 Processing Data

2.4 PlottingData L.

Command Reference

Installation & Setup

4.1 Windows (32bit) Pull down menu version
4.1.1 Installation
4.1.2 Running the Program
4.1.3 Tssues/Bugs

4.2 Windows (32bit) Full Screen version
4.2.1 Installation
4.2.2 Running the Program
4.2.3 Issues with Windows XP/Vista/7

4.3 DOS (16bit) version

13
14
14
15
16
16
17
19
20

22

4.3.1 Installation

4.3.2 Running the Program
4.3.3 Using Both DOS and Windows Splat!

4.4 Linux version
4.4.1 Installation
4.4.2 Running the Program

4.5 SPLAT.INI Configuration File

4.6 Macro Commands

A Appendix: Technical Details
Al Averaging
A2 Smoothing o
A3 Fitting
A4 Caleulus
A4.1 Integration
A4.2 Derivation
A5 Plotting
A5.1 Nice Numbers.
A.5.2 3D to 2D coordinate transform
A53 X—rgbconversion
A.6 Evil Prevention

Bibliography

Index

Chapter 1

Program Description

Splat! is a general purpose data analysis program. It uses a simple,
intuitive command line interface to input, manipulate, and display
data. Think of it as a scientific calculator for processing computer
files- it can preform many of the same data manipulation functions,
and can produce primitive graphical output, but like a calculator
the output options are a bit limited.

Splat! is not a spreadsheet program like Excel ("™™Microsoft
Corp.). Tt is also not a graphical plotting program like Origin
(™OQriginLab) or IGOR (™ Wavemetrics). Nor is it a symbolic
mathematical program like Mathematica (TMWolfram), Maple
("™™Maplesoft), and Mathcad ("™™Mathsoft). To illustrate what
Splat! is, rather that spend a lifetime describing what it is not, it
is probably best to run though a quick example.

1.1 Example Splat! Session

Let us assume we are interested in finding out how the cost of
textbooks scale with how big the book is. Our data set is a set of
X,Y wvalues for each book: the number of pages (X) and the cost
(Y). Our data is stored in two text files (standard human readable
text files) called soft.txt (for soft cover books) and hard.txt (for
hardcovers). We start off or analysis by firing up Splat!*. Here is
what the Windows XP version looks like:

1See Chapter 4 on the details of how to install Splat! for your particular
operating system.

[Running_ fnput pending in Spiatt Consale

After pressing the <Pg Dn> key, we have Splat! read in the
two files using the READ? command: at the > prompt we enter:
READ soft.txt, and READ hard.txt. The first file contains 20
data points, the second file contains an additional 18 data points
(for a total of 38 points). Now that we have read the data into
Splat!, we can take a quick look at the data using the PLOT
command. This is as simple as entering
cliPLOT at the >prompt, or by selecting Plot from the Plot pull-
down menu (in the Windows version). However, to make things a
bit more complicated we also want to display a plot legend in the
upper right corner, this is accomplished with PLOT/LEG=2.

In the DOS version the text command line display is replaced
by a full screen graphics display until the user presses <enter>. In
the Windows version the plot shows up in a new window behind
the command console window. Pressing <tab> switches the focus
between the two sub-windows®.

Note that the data points from the two different input files are
displayed with different symbols. This looks nice, and makes the
output easier to understand, but as far as Splat! is concerned all
data points are treated equally regardless of their source. Only in

2In this manual Splat! commands are indicated in bold all caps when men-
tioned in the text. This is simply so they stand out, the Splat! command line
interpreter is case insensitive. Sample input/output lines are displayed in a
fixed width font (usually in all caps).

3You can also use the mouse to select the plot window; but, this is not
recommended. If you do use the mouse, you must also use the mouse to re-
select the Splat! console sub-window (<Tab> will not work).

100.000

plotting is there any distinction made (and only as long as the order
of the data points is maintained).

Looking at the data, there is only a slight dependence on text
book price with page count. We can further quantify this by fitting
a line to the data and extracting the slope (with units of dollars per
page). To do this we FIT a first order polynomial: FIT POLY=1.
The al coefficient is the slope we are after. In addition to the
fitted coefficients displayed in the table, Splat! also produced a line
output for the plot. If we replot the data by typing PLOT we can
see how well this line fits the data.

100.000

Wrnnutpmdlnnlnﬂm—v

In addition to polynomials, Splat! has a number of other func-

tions that can be used in fitting, but they don’t seem warranted
in this case. Splat! was designed to handle experimental data with
error bars, but our text book data doesn’t have any, so the uncer-
tainties reported in the fitted coefficients and the goodness of fit
parameter (reduced x?) have little meaning.

In addition to fitting, we can also get statistics on a single vari-
able. For example, if we are interested in the cost of books, we
can get a number of statistical number with the STAT command:
STAT Y (recall the y-column is the cost).

»stat ¥

Statistics for 38 data polints:

Average = 46.655790
Avg. Devw. = 15.835350
5td. Dev. = 22.0353050
Variance = 48%5.721300
Skew =i 5.434262E-01
Kurtosis = 2.4125853E-01
(mesckurtic }
Minimum = 4.8950000
Maximum = 105.750000
Median = 44.850000
Sum =i 1772.820000

Since most of the sampled books were purchased long ago, the
average price is quite low compared to present textbook prices.
Good thing Splat! is free.

When we are all done with our analysis, we EXIT the program
with the QUIT command? Other than outputting a new data file,
there is no way to save your work in Splat!. Hence, when you quit
there is no prompt to save your work before exiting.

1.2 Program Uses

Splat! is generally used to either manipulate ‘raw’ data into a for-
mat for another program (such as a fancy plotting program), or to

4A sad attempt at verbal judo. Both EXIT and QUIT close Splat!. Many
other Splat! commands also have multiple aliases.

extract some useful information from a data set.

Data Manipulation One of the (few) strong points of Splat! is
its averaging capabilities. While averaging, Splat! can create
statistical error bars or do weighted averaging of data with
pre-existing error bars. If so directed, Splat! can also recog-
nize and discard outliers/bad data points while averaging.
Complex mathematical transformations can also be applied
to the data. Simple commands can also be used to rescale
data.

Data Analysis As illustrated in the previous section, Splat! has a
number of commands used to extract information from zy and
single variable data sets via fitting and statistical analysis.

To support these primary functions, Splat! has a number of
tools for importing and exporting data, and displaying data. Addi-
tional commands control how the program displays and interprets
data.

1.3 Program Organization

Splat! has three main components that you the user should be aware
of:

e the command line interpreter
e the data storage arrays

e internal configuration flags

1.3.1 Command Line Interpreter

You interact with Splat! via a command line interface. The Win-
dows version of Splat! is essentially a shell using menus and dialog
boxes to create the equivalent text-based commands. Commands
are of the form:

verb[/optional qualifiers] parameter

Most basic operations in Splat! can be accomplished without any
qualifiers, and even the parameters are often unnecessary for ‘de-
fault’ conditions. While these default conditions are appropriate in
most cases, they may not be the best for your particular application
in which case you a have a bit more typing to do.

Note of caution:
Splat! assumes you (the user) is reasonably intelligent and
knows what you are doing. Hence, there is little error
checking built into the program. It is very easy to have
Splat! attempt to analyze non-existent data, or have it
attempt to divide by zero (which occurs in many incar-
nations). Naturally this will crash the program. It is
recommend that you save your work before attempting
complicated operations such as fitting or math operations.

Splat!’s command line interpreter is case insensitive, and most
commands can be abbreviated significantly. For example, the AV-
ERAGE command will be executed for any command that begins
with an AV, thus all of the following are acceptable: AVERAGE, AVE,
AVG, AV, av, aVerySilly, ...

1.3.2 Data Storage Arrays & Internal Flags

Splat! has three main data storage arrays: (i) the standard zys
array, (4i) the column data array, and (4ii) the xy line data array.

Most commands either work exclusively on the xys data or use
these as the default. The zys data is plotted as points. A separate
xy array holds data that will be plotted as a line. While it is
possible to transfer data between these two arrays, this is somewhat
awkward. It is much easier to transfer data between the standard
zys data array with the column data worksheet.

Each of the three array has a maximum size of about 50,000
points (you can find out this size with HELP). Each array has a
flag that tells how many rows are currently being used. For the
xys array this is called N, for the column array it is called M. A
further variable C keeps track of how many columns are filled. The
number of values in the xy line data is also called N, but this N
is different than the N of the point data. Confused? Dont worry,
Splat! generally keeps track of all these variables for you. When

Column data

cl c2 c3 cd c

N

co c7 c8 c9

nnn | nnn | nnn
nnn | nnn | nnn
nnn | nnn | nnn
M—» | nun | ann | nnn

number of rows

C number ofcolumns

Main data (points)

i & y s
Line data
1 nnn | nan | nnn ¥ v
2 | nnn | nnn | nnn . s
3 | nnn | nan | nnn nan | nnn
4 | nun | nnan | nun | 4—N nnn | nnn
index number of rows N/line —w| nnn | nnn

number of rows

you reset the program using the CLEAR command the program
doesn’t erase your old data, it just sets the number of points N to
zero. Using the MAKE and SET commands you can directly set
the values of these counters.

The FORM flag informs Splat! about the type of data in the
xys array. In form=1, only a single column of data contains use-
ful data. In form=2 either the z (or y) column contains data and
the s column contains the uncertainty/error bar for the data col-
umn. More typically one uses either form=3 which is for zy data
or form=4 for zy data with the uncertainty in y stored in column
s. In fom=7 the third column is relabeled as z, allowing plotting of
zyz data in 3D.

How does this all work? Recall the example in section 1.1 of a

10

data set consisting of the data pairs of page counts and book costs.
When you READ in a file with two columns of data Splat! defaults
to assuming the columns correspond to the values for x and y. If
you use the LIST command to look at the data Splat displays only
the x and y columns from point 1 to N. To be more concrete, let
us consider an example where our data consists of the following 9
values:

10
15

8

12
13.5
16
11
11
17

If we READ this into Splat! and LIST the data, Splat! displays
only the z and y columns of data from 1 to 9:

N~ WNFE, WN -

w

Welcome to SPLAT!
Version 4.5 -Win 2.1

format: auto form
variable: X

»read =sanple.dat

format: (X, Y)

Npts = g

>1list
i 1.000000 10.000000
2 2.000000 15.000000
3 3.000000 8.000000
4 1.000000 12.000000
1 2.000000 13.500000
& 3.000000 16.000000
T 1.000000 11.000000
] 2.000000 11.000000
] 3.000000 17.000000

h3

If we now proceed to AVERAGE the data, the three values
at each x value will be averaged together. If we list the data now,

11

we only have three data points. When Splat! averaged the data,
however, it calculated the error in mean for each value and stored
the value in the s column. Splat! doesn’t know if we want to use
this information, so it is ‘hidden’ when we LIST the data.

>avg

Hpts = 3

>list
il 1.000000 11.000000
2 2.000000 13.166670
3 3.000000 13.666670

But if we switch to FORM 4, the newly created error bars are also
listed,

>

>form 4

format: (X,¥,5)

variable: X

>list
1 1.000000 11.000000 5.773503E-01
2 2.000000 13.166670 1.166667
3 3.000000 13.666670 2.848001

While not shown, if we now plotted the data each data point would
include a y error bar.

12

Chapter 2

Command Overview

As mentioned in section 1.3.1, Splat! commands use the following
syntax:

Verb/qualifier(s) parameters

All qualifiers and most parameters are optional. If you omit a
required parameter, Splat! will prompt you for it. Unless the para-
meter required is obvious, you can usually type in a 7 to get a list
of available options. In this documentation, optional parameters
and qualifiers are enclosed within brackets.

One qualifier that is supported by many commands is the range
option, /n1:n2. This limits the scope of the Splat! command to only
those points with an index value between nl and n2. The ‘index
value’ is not the value of x or y but the counting index that runs
from 1 to N. For example, LIST/4:8, would only list data points 4
through 8. If the first number is omitted, the lower limit defaults to
1, while if the second number is omitted, the upper limit defaults
to the number of data points. Except when used with PLOT, the
numbers can be replaced with an expression including the variables
N and M. For example, if you only want to look at the last 11 data
points in a list of 100, you could use any of the following:

LIST/90:100
LIST/90:
LIST/n-10:n
LIST/n-3!-2*pi+e:n

13

There are a lot of Splat! commands. A few are far more useful
than others. Here is the big picture:

Loading/Saving data: READ, WRITE, ENTER

Examining data: LIST, BIN, PLOT
Plot control: PLOT, POINT, LINE, MARK,

LABEL, LEGEND
Analyzing data: STAT, FIT, D, DD, INTEGRATE, REGRESS
Processing data: MATH, FFT, SORT, AVERAGE,

NORM, SMOOTH
Moving data: ADD, PORT, EDIT, MATH, SWAP
Controlling Splat!: FORM, SET, MAKE, CLEAR, CLS

Worthless features: CALC, YO, ECHO
Worthwhile features: HELP, CD, DIR, $

Detailed information on each command can be found in the
Chapter 3. Here we present a brief overview of useful commands
in each main area.

2.1 Entering Data and Moving it Around

There are three main routes of getting some data into Splat!, (4)
reading it in from a file, (4) entering it from the keyboard, or (%)
creating it internally from a function. Let us look at all three routes
a bit more closely.

2.1.1 File input

Splat! can read in most standard ASCII text files. Numbers on a
line of data can be separated by spaces, tabs, or commas. Typically,
Splat! starts up in form=5, auto format. In form 5 Splat! starts
scanning your input file for a line starting with numbers (hence it
skips over most lines starting with characters) and figures out how
many separate numbers are on each line. So for example, if the
first line of the file is

12.00 452 400 7.5 1.0 20

14

Splat! sets C (the number of columns) to 6. And reads the data into
c1 through c6 of the column worksheet. It then transfer the first
three columns to the xys data sheet (¢l — x, ¢2 — y, ¢3 — s), and
sets N, the number of zys data points, equal to M, the number of
column data points (which would depend upon how many of lines
of data are in the file). Finally, Splat! changes the format from
form=5 (auto format) to form=4 (zys). Note that Splat! only reads
data into the column worksheet when it is in form 5 (auto format)
or form 6 (column format). Since Splat! switched from form 5 to
form 4 after the first read operation in the above example, any ad-
ditional read commands will only attempt to read in three columns
of data into the xys data array.

If the first line of data instead consisted of only two numbers,
ie.,

12.00 452

Splat! sets C to 2. And reads the data into ¢l and ¢2 of the col-
umn worksheet. It then transfer the first two columns to the zys
data sheet (c1 — x, ¢2 — y), and sets N, the number of zys data
points, equal to M, the number of column data points. Finally,
Splat! changes the format from form=5 (auto format) to form=3
(zy).

If this all seems confusing, don’t panic. Splat! is simply trying
to make life easy for you. Further information can be found under
the READ and FORM commands in chapter 3. Since Splat!’s
READ command supports wildcards and multiple input files in a
single operation, it is possible to avoid a lot of problems (especially
with multi-column data files) by reading in all the input files in a
single step.

Alternatively, if you know how many columns of data you have,
you can specify the format before reading in the data. For multi-
column data input you specify FORM 6 (multi-column) and fix the
number of columns with the SET command (i.e. SET C=6).

2.1.2 Keyboard Entry

A second way of getting data into Splat! is to type the data in by
hand using the ENTER command. Typically you specify the form
beforehand (with FORM), otherwise Splat! defaults to assuming
you want to enter xy data (FORM 3). This method of data entry

15

is pretty basic, and not recommended for entering more than a
handful of points. You are far better off typing the numbers into
a file using your system’s text editor. In fact, Splat! uses the sys-
tem’s default text editor for the EDIT function which allows you
to manually edit the input.

2.1.3 Creating Data from a Function

Another option for generating data is to specify the values using
a function. As an example, let us assume we want 500 points of
data ranging from =0 to z=10 with y values of sin(z). To do
this in Splat! we first create 500 points of data (from thin air)
with the MAKE or SET commands, i.e. MAKE 500 or SET N=500.
Next we need to set the x values. To do this we use the MATH
function with the index 4 (which runs from 1 to 500) using MATH
X=10*(I-1)/(N-1). With the x values set, we next turn our atten-
tion to the y values, MATH Y=SIN(X). Finally, we switch to Form 3
so that Splat! knows to display only the xy values, FORM 3. With
the Windows version of Splat! this whole process is automated for
you by using the ‘Create from function. ..’ selection under the Data
pull down menu. Column or line data can be generated in a similar
fashion.

2.1.4 Moving Data Around
Suppose we had a data file with the following format

z-value yl-value y2-value y3-value.

We want this data to be interpreted as three xy pairs, i.e. (x,yl),
(z,y2) and (z,y3). Unfortunately, Splat! doesn’t know this and has
instead (in auto format mode) read the x-value into ¢l (and z), the
yl-value into ¢2 (and y), the y2-value into ¢3 (and s), and the y3-
value into c4. It also picked form 4 (xys) for the data format.
Some of this is right, but alot of it is not what we want- what
a mess. Relax, Splat! has some simple commands to move data
between the three data arrays. To fix up this particular example
case we do the following,

16

FORM 3 Switch to zy format

SET N=0 Erase the existing messed up zys data
ADD C1,C2 transfer the x,yl pair

ADD C1,C3 transfer the x,y2 pair

ADD C1,C4 transfer the x,y3 pair

In addition to the ADD command, both the MATH function
and the PORT command can be used to transfer data from the
column array to the zys data set. Only the MATH command
can be used to transfer data back to the column array from the
zys data set. The POINT and LINE functions are likewise used
to shuffle data between the zys data set and the xy line data.
See the appropriate entries in the Command Reference (chapter 3)
for detailed information. The EDIT command, with the correct
qualifier, can be used to edit any of the three data sets.

Column data

cl G2 c3 c4 c5 c6 e c8 c9
MATH Y=C2+C3 MATH/LINE C1=X
PORT 2,2.5 SR, G
ADD C1,cC4
MATH/LINE Y=C2
Main data (points) Line data
x ¥ 2 LINE J
‘_/

POINTS

2.2 Analyzing Data

Once you have read some data into Splat! you generally want to do
one of three things with it, (¢) look at it (i.e. plot it), (é¢) modify it
in some way (i.e. average it) or (74) extract some information from
it without modifying it. The following two sub-sections deal with
the first two options, this sub-section deals with the latter.

17

Splat! can analyze single variable data with either the STAT
command or the HISTogram command. Both are pretty lame.
You are far more likely to use the FIT command to analyze xy or
xys data sets. The FIT command can be used to perform either a
linear least squares fit or a non-linear least squares fit to the data,
the choice depends on the function being fit. Fitting a polynomial
is a linear fit (i.e. the fitted coefficients are linear combinations of
the fitted basis), whereas fitting a Gaussian peak is a non-linear fit.
With the important exceptions of problems with round-off errors
linear fits and pathological data linear fits will always yield the
‘best fit’ answer. Non-linear fitting, on the other hand, requires
an initial guess of the fitted coefficients before narrowing in on the
‘best-fit’ values. If you start with initial guesses that are far from
the ‘best-fit’ values, the fit may not find the global ‘best-fit’ and
instead only a local one. Splat! attempts to come up with reason-
able starting values based on input data. For example, when fitting
a Gaussian peak Splat! assumes the largest y-value corresponds to
the peak amplitude, the z-value of this point is the center of the
peak, and the width is the z-value where the amplitude falls to half
the maximum amplitude. This should work most of the time, but
not always. Since Splat! automatically produces a line of the fitted
function, it is very easy to compare the fitted function with your
data using the PLOT command. This visual inspection procedure
is highly recommended to verify that Splat! has done a reasonable
job before accepting non-linear fit results.

When Splat!’s fitting fails
In cases where Splat! has done a poor fitting job, you
are in a bit of a pickle since Splat!’s fitting procedure
is fairly automated. Nonetheless, you still have a few
options:

1. Change that starting conditions by editing the data
to remove bad points, or otherwise limiting the
data range.

2. Switch fitting functions. If fitting a Gaussian peak
doesn’t work, maybe a Gaussian peak with a con-
stant background (or vice versa) would work bet-
ter. Likewise you could switch between a polyno-
mial and fixed power of z.

18

3. Simplify the problem for Splat!. Sometimes Splat!
fails when the input values are way too Big or too
small; in these cases you may be able to get good
results by simply rescaling the z or y values by
a fixed amount and refitting. As another exam-
ple, imagine you are interested in finding the area
of Gaussian peak, but fit Gaussian is producing
a poor fit. If you know the expected width of the
Gaussian peak, you can simplify Splat!’s fitting job
by reducing the number of free parameters by sup-
plying the known width (e.g. fit Gauss=0.25).
Another trick for fitting Gaussian peaks when the
background is neither zero (Fit Gauss) nor a con-
stant value (Fit Gaussb), is to first fit a straight
line to the data (ignoring the Gaussian peak) to re-
move the background (i.e. FIT/SUB POLY=1), then
fitting a Gaussian (with background) to extract
information on the peak (i.e. FIT GAUSSB).

Some basic calculus operations can also be performed on the
data without modifying it (too much) including INTegration and
derivatives (D for the first derivative, DD for the second deriva-
tive). These are both pretty lame: the integration routine also sort
the data, and only uses the simple trapezoid rule. The derivative
functions are highly sensitive to noise (and round off error).

2.3 Processing Data

Splat! includes many commands to modify the xys data in some
fashion. Some of these commands can also be applied to the column
data of zy line data with the appropriate qualifier. By far the most
useful of these commands is the MATH function. This function
can be used with wide variety of standard mathematical functions
and operations to express any one variable (X,Y,S,C1,C2,...C9)
as a function of itself and any combination of the others as well as
the index I, the total number of points (N or M), and the mathe-
matical constants E (e=2.718...) and PI (7=3.14159...). See the
MATH entry in the Command reference for numerous examples.

A related function is the NORM command which can be used
to rescale data in one easy step (including error bars if in xys form

19

4). Both MATH and NORM modify values with out chang-
ing either the total number of points or the order of points in
the data arrays. In contrast, SORT can be used to reorder the
data. AVERAGE both sorts the data and reduces the number of
data points. SMIOOTH is the less intellectually honest, bastard
offspring of AVERAGE that does some averaging of noisy data
without decreasing the number of data points. The fourth circle of
Hell is reserved for those who use this function. Also destined for
trouble are those who venture to use the Fast Fourier Transform
(FFT) function that only sort-of works.

2.4 Plotting Data

Ah, back in olden times® the primary output device for Splat! was
a text only VT-52 terminal. Splat!’s PLOTting functions have
progressed quite a bit since then, but the old-school text output
plotting routine can still be accessed with PLOT/T. Here for example
is the text version of the plot from page-6:

200,000 | i 2222 26 s 2222 2e s 2222 2e 1

100.000 - X -
X
] ————K——
- T — /
X XX/
| S S—— /
00X --0-XXOX-- X XX O
-—-X--00 © 00 o
0 ——mmmm / 00X
—ifl o o o
000 2w = = = B sl s & 5 & 5.9 TR EY Te = 2 w953 1
a1 100.000 550.000 1000.000

The modern version of PLOT has oodles of optional qualifiers.
These fall into three broad classes, (i) system-dependent, graphics-
mode selection controls, (i) options that control plot symbols and
line types, and (4ii) other qualifiers that affect how the plot looks.
Category (i) qualifiers are best left to the to the detailed command
reference (chapter 3) and the program installation/setup chapter

1 Also known as the early 1990’s.

20

(Chap. 4). Category (ii) qualifiers are very user unfriendly and best
not accessed directly. Instead, it easier to adjust these parameters
though the MARK and LABEL commands. Or, even easier, let
Splat! worry about them with the I_MARKER=1 option selected in
the SPLAT.INT file (see Sec. 4.5). Indeed, considering the only one
to see the output of Splat! is the user, there little reason to mess
around with how points and lines are displayed and labeled. Far
more useful are parameters in category (i) such as /XLOG and
/YLOG that select a log scale instead of the usual linear scales. The
/DATA qualifier prevents Splat! from rounding the plot limits to
nice ‘round’ numbers and instead forces the limits to the actual
data limits. This same qualifier can also be used with the FIT
command to limit the fitted line (useful when ‘round’ numbers are
unphysical (i.e. would be zero on a log scale).

21

Chapter 3

Command Reference

$command

In the DOS version, this spawns a DOS process to execute the given
command. In the Linux version this spawns a process to execute
the given unix command. In the Windows version, this command is
no longer used since you can switch between windows easy enough.

ADDI[/n1:n2] Cnl [,Cn2, Cn3]

Transfers data from column data set to the points (X,Y,S) data
set. The exact destination is set by the format and default options.
For example, in form=3, ADD C1,C5 will append the C1 data to the
X data, and append the C5 data to the Y data. See also the PORT
command.

AVERAGE[/SUM,/SD,/D,/X] [delta_x]
Averages all Y values with the same X values (or within delta_x
wide bins). In form=3 (xy mode) the S vector is set equal to the
uncertainty in the mean (o/v/N). If you instead want the ‘real
standard deviation, use the /SD option. Note that you must use
FORM to see these ‘new’ S values. In form=4 (zys mode), S is
the weighted average. When using the delta_x parameter, the X
coordinate is set equal to the simple average of the data points. In
/SUM mode, all Y values within a bin are added together instead of
averaging.

If the /D option is included Splat! will attempt to discard ‘bad’

22

data points. . To see how this is done, consider the following
example, suppose you had four points of 5, 5.1, 4.9 and 100. Clearly
the 100 point is wrong, but this one bad point will shift the average
from 5 to 29. With the /D option Splat! corrects for this by finding
the median value and the standard deviation. Then Splat! discards
all values more than 2.5 standard deviations from the median (a
robust indicator of the mean). Or you can over-ride this default
value by supplying a new cutoff (measured in units of the standard
deviation). For example, /D=3 would set the good/bad threshold
at 3o from the median.

In form=7 (xyz-mode) Z values at the same X,Y values (or
within Xt+delta_x, Y+delta_x wide bins) are averaged together.
With the /X option the binning criteria is only applied along the
x-axis (i.e. X+delta_x, Y40 bins).

BIN[/n1:n2] num-bins, [var]
A simple text histogram of the default variable or the specified
variable. Same as HIST.

CALC

Reverse Polish Notation (RPN) calculator mode. CALC has its
own help command (or see MATH). In CALC mode, only the N
variable is defined, X,Y,S, and I are not valid. Use QUIT, EXIT or
<control>-Z to return to the Splat! prompt.

Expressions can be entered on one line in either algebraic mode
or RPN mode. For example, 4+ (2+3) can be evaluated by entering
either 4+2x3<enter> or 4 2 3 * +<enter>. When using previous
results (displayed on the stack) you must use RPN notation; so to
add two number (i.e. 2 & 5) you would enter 2<enter>, 5<enter>,
+<enter>.

CD directory
Changes the default directory (same as the MS-DOS/Linux com-
mand).

CLEAR
Sets the number of points to zero, no line, and default format and
variable.

23

CLS
Clears the screen.

DI[/ADD, /n1:n2] [xwidth]
Numerical derivative of the Y data (dy/dz). The derivative is found
by fitting a line to all points within a sliding window of width
[xwidth], if this is not specified it defaults to a few percent of the
maximum x range. If there are not enough points to fit a line within
an interval, the size of the interval is increased. The z-spacing need
not be constant, and can contain repeats. The output results are
saved in the xy line array. This replaces any existing line unless
the /ADD switch is included.

Note that numerical methods to calculate the derivative (D)
and second derivative (DD) are highly sensitive to noise and any
roundoff errors in the data. Results should be used with caution.

gooo0 [T T T T T T T T T [T T T T T T T T T
[0 y=sin[x]
— derivative
--- second derivative

|

500

000 5.000 10.000

Figure 3.1: Sample derivative (D) and second derivative (DD)
output of y = sin(xz). Raw function has 200 data points, first
derivative output has 81 data points, second derivative output has
32 data points. Note small glitch in first derivative curve near
x =8.7.

DDI[/ADD, /n1:n2] [xwidth]

Numerical second derivative of the Y data (d?y/dz?). The deriv-
ative is found by first fitting a line to all points within a sliding
window of width [xwidth], if this is not specified it defaults to
a few percent of the maximum x range (see first derivative func-

24

tion D). Next the derivative of this intermediate line is found, i.e.

d
dz
xwidth. The results are saved as the line replacing any existing
line unless the /ADD switch is included.

(j—i’). The final spacing between points is typically about twice

DIR
Disk directory.

ECHO text_string
Prints text_string on the screen.

EDIT [/LINE or /COL] Edit data using the standard system editor.
For the DOS version this is the DOS editor, for the Windows version
this is Notepad, for the Linux version this is the vi editor. Data is
written to and then read from the file SPDATA.TMP. Use /LINE to
edit the line data, or /COL to edit the column data. Note that the
column data is written out with a maximum of four numbers on a
line. So if you have 6 columns of data, the first four numbers will
be on line-1, and the last two on line-2. The next record will start
with four numbers on line-3.. ..

ENTER
Enter data into Splat! from the keyboard. Enter a / to exit.

EXIT
Exit program. You can also use QUIT, or hit <Control>-Z (End-
Of-File).

FFT[/INV] [var] Takes the Fast Fourier Transform of a set of
equally spaced data points. Splat! will round down the number of
data points to the nearest power of two, and find the magnitude
of the Fourier components. The transform is applied to: the de-
fault variable if in form 1 (x), or form 2 (zs); the Y variable if in
form 3 (zy) or form 4 (xys); or these defaults can be overridden
by supplying a variable name. If in zy or zys format, the z-axis
is transformed to the proper frequency scale. The /INV option re-
verses the FFT out of the frequency domain. Unfortunately, this
doesn’t reproduce the initial function since phase information is
lost in the forward FFT, as well as truncations in the number of
data points.

25

FIT[/options] [/n1:n2] function=n
Options include:

/D take line limits from data (instead of nice round numbers)
/ADD append output line instead of replacing existing line
/NL do not produce an output line

/SUB subtract fit from data without producing an output line
/n1:n2 limit fit to selected range of data

Linear (or non-linear) least square fit a function to the data. Pos-
sible functions include:

FIT POLY=n n*" order polynomial (linear fit)

n
y= g a; x'
i=1

90.000 T T T T T T T T T T T T
[O poly.dat 7
[— Fit poly=1 E
[--- Fit poly=2 /
[--- Fit poly=3 7% |
% H/r
45.000 4

IFrTT T TTTT | T T T
‘m\E\ -
L1 | I Y |

26

FIT EXP=n sum of exponential powers (linear fit)
n
y= 2 a;et®
i=0
SG00000——— ——————
[O exp2.dat]
:— Fit exp=2 :
1000.000—
ZT“_..D‘E'_"_‘_AI\ ol e
000
000 2.500
FIT POW=p nt" power of x (linear fit)
y =ag xP
8.000 T T T T T T T T ‘ T T T T
[O pow.dat
|~ — Fit power=1.5000 m
[Fhe 7

3.500

FIT DECAY single exponential decay (linear fit)

y:ao ealm

4.000 T T T T T T T ‘ T T T T T T T T

i O decay.dat

— Fitexp. decay |
2.000
000
.000
FIT RISE exponential rise (non-linear fit)
(z—aj)
y=ay |1—e a2

4.000 T T T T T T T T T | T T T T

O rise.dat
| — Fitexp. rise

2.000

FIT GAUSS[=fwhm] Gaussian distrib. (non-linear fit)

Y = ag e_(f"f—“l)z/ag

300.000 T T T T T T T | T T T T T T
B [0 Xe_2pb.dat |
(i — Fit Gaussian |
B w0 ’
100.000 |— —
L 1 1 1 1 1 | 1 | | 1 1 1 1 | i
-100.000
821.000 £23.000 £25.000
FIT GAUSSb[=fwhm] Gaussian dist. with (non-linear fit)
constant background
_ _ 2 2
Yy =age (x—ay) /a2+a3
20.000 T T T T T T T | T T T T T T T
[0O Xe_3p8.dat]
| — Fit Gaussian with bkg. 7
10.000 —

.ooo
465.000 467.500 470.000

29

FIT GAUSS2[=fwhm] al a4
Two Gaussian Peaks (non-linear fit)
at x = a1 and a4 with same FWHM

—age—@—a?/a} | g o—(a=a)?/a}

<

O SMTORR_ICP.DAT
— Fit 2 Ganasian peaks

i T T e

10-000

—10.000
433.-000 433.500 434.000

FIT ASYMb[=fwhm] Asymmetric Gaussian (non-linear fit)
dist. with constant bkg.

(Use FIT ASYM for fit without constant background.)
L;;Ll)2 (1+exp[a421(:):7u1)])2}

.

1w00.000 T T T T T T T T T 5
:D USB SPECTRA.DAT A
| — Fit Gaussian

--- Fit Aaym. Gausaian

S0.000

=000
&70.000 &75.000 &6B0_.000

30

FIT MAX Maxwell-Boltzmann Distrib. (non-linear fit)

2
= —aq
VRS

300.000 T T T T T T T T [T T T T T T T T 1
O Te_4e¥.dat
— Fit Maxwellian Distr.

1
_,./
\/5 73/2 e r/ax
aq

150,000

.ono
000 15.000 30.000

FIT DRU Druyvesteyn Distrib. (non-linear fit)

1

1
y a Vo —75 e
VROV

—0.243 2% /a?

0000 T ' ' 1 T T T T T [T T T T T T T T 1
O Te_4eV.dat

— Fit Maxwellian Distr.
--- Fit Druyvesteyn Distr.

150.000

Rilili}
.0oo 15.000 30.000

FIT ARR Arrhenius Form (non-linear fit)

a —22
y=apzr"t e =

.300 T T T T T T T T | T T T T T
| O Exc_Rate.dat
| — FitArrhenius form

150

000
1.000 5.500 10.000
FIT MORSE Morse Potential (non-linear fit)
2
Yy = Qg 1—e™™ (1_a2)} + as
11.000 [T T T T T T T T T T T T T T T T T T

[0 N2_A.dat
— Fit Morse potential

8.500

6.000
1.000 1.400 1.800

Two forms of output are usually produced. (1) A text listing of
the fitted parameters along with uncertainties; and (2) a 100 point
line of the fitted function. Use the /D option to limit the output line
to the range Tmin t0 Tmax of the data. To suppress the generation
of the output line, use the /NL option. To append the fitted line
output to your existing line data use the /ADD option.

Note that the uncertainties listed for the fitted parameters are
only valid if the fit was done in form=4 with realisitc y-uncertainties.
The text listing of parameters also includes the reduced x? (x? di-
vided by the number of degrees of freedom) goodness of fit value.
The smaller the value, the better the fit. A value of about one is
expected for data with statistical errors bars when fit to its true
functional form. In form=4 (zys-mode), the size of the y uncer-
tainties are known, and the reduced 2 value has ‘real’ meaning.
In form=3 (xy-mode), Splat! doesn’t know the size of the y uncer-
tainties, so these are set to 1 in the calculation of x2. The value of
reduced x?2 in this case can then be used to estimate the unknown
uncertainties in y (i.e. switch to form 4, and use math to set the S
values to give reduced x? ~ 1).

With the /SUB option specified, the fitted function is subtracted
from the data and no line output is produced. By default, the fit
is subtracted from all of the zy data, even if only a select range of
the data (by using the /n1:n2 option) was used in the fit. To limit
the subtraction to only the fitted range, use the /D option.

The Gaussian fits also output the FWHM of the curve, and the
area of the Gaussian portion of the peak. By default, the width
of the Gaussian peak is allowed to vary as a free parameter. If,
instead, you specify the width (i.e. FIT GAUSS=1.1) this is held
constant.

FORM format, [var]

Change the default data format and variable. In general, the format
number tells how many data columns are being used, while the
variable tells Splat! what the default choice is for operations such
as sorting. Valid options for format are:

format # data format

0 user defined
1 X
2 X.S

33

format# data format (continued)
XY

X,Y,S

auto format

multi column

XY, Z

N O U W

Valid choices for the variable are X, Y, and S (or Z if in form 7).
To change the variable with FORM, you must also provide the
format. Examples:

FORM=4 change data format to form 4 (xys)

FORM 3 change to form 3 (xy)

FORM 2,Y change to form 2 (zs) with Y as default variable
(hence this is really (ys) mode. ..

Note that changing forms does not delete/reset the data int the
X,Y,S vectors. It simply controls how many columns of data are
displayed, and whether error bars should be plotted or used in
some operations such as fitting or averaging, of if the third column
of data should be interpreted as the z-coordinate (in form 7) for
plotting, averaging.... The user defined format (0), auto format
(5), and multi-column format (6) are special formats used to control
how files are read into Splat!, see the READ command for more
details.

HELP [/MATH] [command]

Help screen of Splat! commands. The /math option provides assis-
tance on available math functions and variables. The help screen
also lists the maximum number of data points your version of Splat!
can support. The standard HELP command produces a list of most
basic commands and options. More detailed information for some
commands, particularly those with lots of options like AVER-
AGE, FIT, PLOT..., is also available with HELP command. For
example, type HELP FIT for a list of options & parameters unique
to the FIT command.

34

HIST
Histogram of data (See BIN for full details).

INCLUDE
Include/read data from file (see READ for full details).

INT [x1,x2]

Numerically integrates the y data, using the trapezoidal rule. The
z-spacing need not be constant, and can contain repeats (which
are averaged together). With no arguments, it integrates the entire
data range. If both x1 and x2 are included, the integration is only
performed over the points nearest the interval specified. Splat!
will inform you of the actual range of integration. Note that this
command also sorts the data.

T2
Answer = / Yi(z)dx

Z1

LABEL[/LINE] [/N=num] text_label

Used with MARK and PLOT to create a plot legend. With no
options, the last marker set is labeled with text_label. Or use
the /N=num option to replace the label for marker num. The /LINE
option is used to select the line labels. Use MARK/LIST to view what
labels are associated with each marker number. By default, Splat!
sets labels to input filenames, etc. ...

LEGEND [0]

In the Windows version only, opens a separate window with the
plot legend. The window closes when you hit a key. LEGEND O
creates a static legend window that must be closed manually using
the mouse.

LINE[/options| [filename]
Options include:

/NO
/CLEAR
/ZERO
/ADD
/n1l:n2

35

With no parameters or qualifiers, this function converts the xy data
to a line and sets the number of points to zero. If you include a
filename, the line is read in from the file instead. Use the /NO or
/CLEAR qualifiers to clear an existing line, /ZERO to add a y = 0
line. By default the present line is erased; to append the new line
to the old line use /ADD. Line data is usually a two column affair
(zy-coordinates with no error bars), but in form 7 (zyz mode),
lines have three columns.

LIST]/options]
Options include:

/LINE
/COLUMN
/FILE
/MARKERS
/ni:n2

With no options, this command lists the xys data on screen (with
the number of columns determined by FORM). Use /LINE to see
the line data, or /COL to see the column data. Use /FILE to see the
filename used in the last read/write operation. The /MARK option
lists the data markers and labels (see also MARK/LIST). Same as
the SHOW command.

LOAD
Load/read data from file (see READ).

LS
Disk directory. Same as DIR.

MAKE nsize
Increases the number of data points by nsize. Use a negative
number for nsize to eliminate points. See also the SET command.

MARK(|/options] [n1, n2, n3...]
Options include:

/NO
/CLEAR
/LINE

36

/LIST
/ADD

Marks are simply points in the data list where you wish to change
plot symbols. It is a simple way of automatically appending
/NSET1=n1,n2,n3... onto each PLOT command. Marks are en-
tered either automatically by Splat! (if I_MARKER=1 in the SPLAT.INI
file), or by entering a list with the MARK command. Use the /NO
or /CLEAR options to delete all marks, or use the /LIST option to
view the currently set marks. If you want to add a new mark, with-
out retyping in the whole list again, use the /ADD command. Any
command that can alter the order of the data points (AVERAGE,
EDIT, SORT, ...) will automatically clear all marks. Associated
with each mark is a text label (visible when data is plotted with
PLOT/LEG) that can be altered with the LABEL command.

A similar list is also kept for the line data (for appending
/NLINE=n1,n2,n3... onto each PLOT command). Use the /LINE
option to enter/alter/clear these values.

Outside of PLOT marks have no influence on how data is
processed or displayed, all xys data are treated the same by Splat!.

MATHI[/LINE] [/n1:n2] [/J] expression

Manipulate data. The expression must be of the form var=...,
where var is either X,Y, S (or Z in form=7), or C1 to C9. With the
/LINE option, you can alter the X,Y (and Z in form=7) line data
(and C1 to C9). Note that you can alter a variable which is not in
the current format (for example, if in form 3 (zy) you can still do
MATH S= Y/10).! The part on the right side of the equal sign can
be a rather complicated expression involving constants (numbers,
m, e), variables (X,Y,S or Z,I,N,M, C1 to C9) and a variety of functions
(sin, cos...).

variables/numbers:
XYSZINM
-the X,Y, 8 (or Z) vectors, index I, and the Number of data points

E PI
- standard numerical values for e and 7

1Z is only valid in form=7 (zyz mode), S is valid for all forms except form
7.

37

RAN RANG
- a random number between 0 and 1, a random number with a
Gaussian distribution of width 1 centered at 0.

functions:
CHS
- convert to negative number

+ - %/ () INV " *x SQRT ABS
-algebraic functions

MOD INT NINT
-algebraic functions with integer values

MIN MAX
-Minimum and Maximum of two arguments

! FACT
-factorial (integer argument) / natural log of gamma function (real
argument,)

SIN COS TAN ASIN ACOS ATAN
-trigonometrical functions (radians)

SIND COSD TAND ASIND ACOSD ATAND
-trigonometrical functions (degrees)

EXP LN SINH COSH TANH
-natural log & hyperbolic functions

LOG ALOG
-base-10 log

DUP DROP SWAP CLEAR
-stack commands (CALC mode only)

Note that starting with version 4.1, Splat! can now correctly
handle most negative numbers, such as SIN(-X), whereas in the
past this could cause serious problems (since the minus sign looked
like subtraction).

38

With the /n1:n2 option the data is only modified for points
between n1 and n2. By default, the index variable I is the absolute
index value, i.e. MATH/4:7 Y=I will set Y=4 for point 4. Use the /J
option for relative indexing, i.e. MATH/J/4:7 Y=I will set Y=1 for
point 4 (since this is the first point in the restricted range).

Some examples:

MATH X=XA2 Ty — 12

MATH Y=X-4 v =15 — 4

MATH Y=(C2-C3)/C4 y; = (¢4 —cb)/c4
MATH X=3+I-0.5+RAN x; = 3i+0.5

MATH Y=SIN X y; = sin(z;)

MATH Y=EXP(CHS X) y; =e &
MATH/LINE Y=Y+4%X yline = yline 4 4 gline

NORMI[/LINE] [/n1:n2] [I=pt_num] [var=val]

With no options, this will renormalize all of the Y data points so
that the peak Y value is equal to one. Optionally a new value
other than one can be supplied. By including a variable with the
optional value, a different variable can be normalized. To choose the
normalization point to be a value different from the peak, use the
I=pt_num parameter.? The same transformation is also performed
to the S data if in form 2 or form 4. With the /LINE option, the
line data is normalized. Examples:

NORM set peak Y value to 1
NORM 12 set peak Y value to 12
NORM Y=12 set peak Y value to 12

NORM I=30 Y=12 sets Y value for point num 30 to 12

ourT
Equivalent to WRITE command.

2Sorry, but Splat! doesn’t allow you to normalize y to be some value at a
specified z-value (e.g. y(x = 2.5) = 10). However, this is possible if the z-value
of interest corresponds to value in the zys data set (x;) and you know the
index-I of this point (since you could then use NORM I=val Y=val.

39

POINT[/R]

Adds the existing line data to the regular zy data points. This does
not clear the line.?> With the /R option the 2y data is replaced with
the line data. If in form 7 (xyz mode) the z values are transferred
as well.

PORTI[/C,/X] x1,x2

Transfers data, for a selected x range, from the column data set to
the points (X,Y,S) data set. Only points with C1 values in the range
x1 < C1 < x2 are transferred. The number of columns transferred
is determined by the format: in form=3, C1—X, C2—Y; in form=4,
C1—X, C2—Y, C3—S.

In zyz-mode (form=7), C1—X, C2—Y, C3—Z. Assuming z =
f(z,y), the x1,%2 selection limits are only applied to the z-coord,
with y allowed to take on any possible value. If you instead want to
select a subset of the column data based on the y-coordinate, you
need to interchange the roles of columns C1 and C2 using SWAP
(e.g. to select y-values between 0.5 and 2, SWAP C1,C2, PORT 0.5,2,
SWAP X,Y). SWAP can also be used to re-arrange data in the col-
umn array so that the desired column appears in the correct order
for the standard column— xys mapping to work the way you want.

By default, the points are appended to the existing zys data
set, to replace the existing data use the /C option. The /X option
replaces the existing data (as with /C) and deletes any line data.
See also the ADD command.

PLOT|[/options|
Options include:

/DATA force z&y plot limits to min/max of
actual data

/nl:n2 plot only points n1 to n2 (no
expressions allowed)

/NSET1=n1,n2,... plot first n1 points as squares, then all
points up to n2 as ‘xs, etc...

/NLINE=n1,n2,... starts a new line after n1, n2,...

3Note that the corresponding point — line function LINE does set the
number of data points to zero. Hence, if you start off with xy data points, and
then issue LINE followed by POINT you end up with the same data in both the
zys data array and the zy line data array with N=Njj,c.

40

/XL0G
/YLOG
/ZL0G
/CONTOUR
/DROP

/THETA=value

/XNM

/XA

/XM or /XU

/X8, /YS, /ZS, /IS
/LEG [=position]
/TEXT

/PRINT

/PS

/BLACK

/OVERWRITE

/SI1ZE=size
/MODE=video_mode

plot xz-axis on a log scale

plot y-axis on a log scale

plot z-axis on a log scale [3D plotting]

2D contour plot of (zyz) data

add drop lines to data points (and line
segments in 3D plots)

rotation angle 6 (in degrees) of coordinate
axes [3D plotting]

plots data in color assuming z-coordinate is
wavelength in nm (also /YNM, /ZNM)

plots data in color assuming x-coordinate is
wavelength in A (also /YA, /ZA)

plots data in color assuming x-coordinate is
wavelength in um (also /YM, etc...)

color code data based on value of X,Y,Z, or

index-I (blue=small values — red=large values)

draw a plot legend in upper left corner (or
other position)

text mode output (retro Splat!)

produces HPGL output file (see below)
produces PS output file

black background on PS output [/PS only]
overwrite existing HPGL/PS output file
(for use with /PRINT or /PS)

change plot size (see below)

change the graphics mode (see below)

Despite the bewildering variety of options, simply typing PLOT
is usually sufficient to produce a simple 2D plot of all data (points
and lines). In form=7 (zyz) the same PLOT command produces a
3D plot. PLOT will normally choose appropriate z&y data ranges
(from both the line and point data), and plots the data points as
squares. If there are a large number of data points, the size of each
symbol is automatically reduced. The /DATA switch forces the plot
limits to the actual data limits instead of using round numbers.
To plot data on a base-ten log scale, use the /XL0G and/or /YLOG
options— note that only positive values are allowed for a log scale.
The /DATA switch is ignored on any axis plotted on a log scale.

41

[0 eept.dat
— Fit Maxwellian Distr.

10" 3

10°-1
.00

=]

15.000 30.000

Figure 3.2: Sample log plot, PLOT/YLOG/LEG=2.

If in form 4 (xys) the S value is used to create an error bar on
the Y value. To remove the error bars, you must use FORM to
switch to form 3.

Different sets of data can be plotted with separate symbols using
the /NSET1 and /NLINE options. With the /NSET1=n option, only
the first n points are plotted as squares, remaining points as Xs,
etc. ... To have all your data points be Xs, use /NSET1=0. With the
I_MARKER option in the SPLAT.INI file (see section 4.5), Splat! can
be configured to automatically append /NSET1 and /NLINE options
onto each PLOT command.

Splat! normally color codes data points and lines using the
marker information provided in the in /NSET1 and /NLINE options.
Alternatively, plots can be color-coded assuming that a specified
variable corresponds to the point’s wavelength. For example, the
/XNM option causes Splat! to color code points and line segments
assuming the z-coordinate corresponds to a wavelength measured
in nanometers (see sample plot). x/A-values outside the visible
spectral range (~400-700 nm) are plotted as dark violet (short A)
or dark red (long A). Similarly, the /XA option works the for wave-
lengths measured in Angstroms (A), and /XU or /XM can be used for
wavelengths measured in microns (um). Colors are approximate,
with the maximum number of different colors displayed limited by
the color depth of the plot mode (see chart on p. 45 for DOS plot

42

N2_spectra.dat

300.000 500.000 700.000

000

Figure 3.3: Sample of wavelength color coding of Ny emission spec-
trum, PLOT/XNM/LEG=2.

modes). Plots can also be color coded with the blue-to-red spectral
range stretched to cover the minimum-to-maximum range of the
selected axis using the /XS, /YS, and /ZS options. Likewise, /IS
color codes points(or line segments) based on the index number of
the point (or line segment).

To include a legend in the upper left corner of the plot, use
the /LEGEND option. If this overwrites some data points, you can
select another location by using /LEG=position instead, where po-
sition=1 is the upper left corner, 2 is the upper right corner, 3 is
the lower left corner, and 4 is the lower right corner.

The /TEXT, /PRINT, /PS, and /MODE qualifiers select what form
of output device is used. /TEXT uses the original Splat! version 1.0
character cell plotting routine. Note that this text output rou-
tine does not support many of the more advanced PLOT op-
tions. /PS produces a Postscript (.PS) output file called SPLATn.PS
(n=1,2,3...). With the /OVERWRITE option Splat! overwrites any
preexisting SPLAT1.PS file. With the /B option Splat! uses a black
bacground in the PS output that more closely mimics the screen
output.

In form="7 (zyz-mode), PLOT produces a 3D plot of Z(xy). The

43

< >éJ

Figure 3.4: Sample 3D data plotted via PLOT/ZS.

ranges of the x-,y-, and z-axes are stretched to cover approximately
equal lengths in the 2D representation of the 3D data (i.e. the a-
range of the data appears to be the same length as the y-range).
The /D option turns this off, so the y-axis will appear twice as long
as the z-axis if the y-data range is twice as large as the z-range.
When possible, Splat! only plots positive axes, originating at the
(0,0,0) origin. If the origin falls outside the data range, Splat! draws
the axes at the minimum value. Droplines produced by the /DROP
option extend to either the z=0 plane or the z,;, plane depending
on whether the z=0 plane falls within the z-range of the data. The
/THETA=angle selects the rotation angle (measured in degrees) of
the zyz coordinate system.

A fe L

0 =-45¢ 6=-22° =135¢ 0=180°
default

Using the /CONT option (form=7, zyz-mode only), the zyz data is
displayed as a color-coded top-down 2D contour plot in a standard

44

Splat! plot, with the color of the point/line segment corresponding
to the z-value.

Figure 3.5: Sample 3D data plotted as contour plot, PLOT/CONT.

System specific notes: DOS version
/MODE is only applicable to the DOS/PC version of Splat!. It selects
one of the standard VGA/SVGA graphics modes:

Mode screen size colors

/M=VGA 640 x 480 16 color

/M=640 640 x 480 16 color

/M=800 800 x 600 16 color

/M=801 800 x 600 256 color
/M=SVGA 1024 x 768 16 color
/M=1024 1024 x 768 256 color
/M=1280 1280 x 1024 16 color
/M=AUTO0 Dbest CGA, EGA or VGA available

45

/PRINT produces a HPGL output file called SPLATn.HPG (n=1,2,3...),

and then issues the command HPSPLAT SPLATn.HPG. Typically, this
is a HPGL file viewer. For actual hardcopy output, this file can be
imported into a ‘real’ program such as most popular graphics and
word processing programs. With the /OVERWRITE option Splat!
overwrites any preexisting SPLAT1.HPG file.

System specific notes: Linux version
/PRINT produces a HPGL output file called SPLATn.HPG, and then
issues the command:

HP_PRINT1 SPLATn.HPG HP_PRINT2

where the HP_PRINTns are defined in the .splat.ini file. Typically,
this is a HPGL file viewer, such as hp2xx. Under Linux, the HPGL
file output is the default output mode as well, but Splat! issue the
command HP_PLOT SPLAT1.HPG to view the output. In addition, in
plot (versus print mode) the /OVERWRITE option is used to prevent
your working directory from filling up with SPLATn.HPG files. See
section 4.5 for more details on editing the .splat.ini file.

System specific notes: WINDOWS menu-version

Two output modes can be used in the Windows version of Splat!.
A standard HPGL graphics file can be created with the /PRINT
option. For actual hardcopy output, this file (called SPLATn.HPG,
with n as a running index) can be easily imported into most pop-
ular vector-based graphics programs and many word processing
programs. Alternatively, you can use the Windows <alt>-<prt
screen> to copy the current Splat! window to the clipboard. This
can then be pasted into Paint as a standard Windows Bitmap file.

For the ‘conventional’ pull-down, menu-driven Windows ver-

sion, you can use the <TAB> key to switch between the plot win-
dow and the command console being in focus. The LEGEND
command is used to create a separate plot legend in a new window,
instead of placing the legend in the plot. By default, the size of the
plot window corresponds to approximately 80 x 24 characters, with
the size of the axes filling the window. If you manually resize the
window (making it either bigger or smaller), nothing will happen

46

until the next PLOT command, after which Splat! will maximize
the plot to fit the new window size.*

System specific notes: WINDOWS full-screen-version

For the Windows full screen version, a PLOT command clears
the screen, and produces a plot in the upper left of the screen
approximately 80x24 characters wide (default size=1). To create
larger (or smaller) plots, use the /SIZE=size option to set the
magnification factor of the plot size. A value of /SIZE=2 usually
produces an output close to the full screen size. As with the menu-
driven Windows version, <alt>-<prt screen> can be used to copy
the current Splat! window to the clipboard as a Bitmap image.

QUIT
Exit program.

READ|[/FORM=nun, /format_statement] filename

Read in data set from a file. The file can include blank lines. Lines
that begin with non-numeric characters are skipped. If you enter ‘7’
for the filename, a directory listing is provided before the further
prompting for a filename. Splat! also supports wildcards (* and ?)
in the filename.

The number of columns of data read in depends on the present
data format (see FORM). The format can also be set by appending
a format qualifier of the type /FORM=num or /num to the READ
command.

If in form=0 (user defined format), a format_statement is also
required. The format statement is of the type /’0,0,X,Y’. Where
the format statement consists of a line telling which column in the
data file to interpret as each variable (X,Y,S), and which column
entries to ignore (0). The entire statement must be enclosed in
single quotation marks. In the preceding example, the numbers
in column three will be read into the X vector, and the numbers
in column four will be read into the Y vector. Note that you are
still limited to only three total values per line that can be read
in (X,Y,S). Splat! will switch to the appropriate format after it
has read in the data. Some examples of the user defined format

4Prior to Splat!’s Win 3.0 version, this didn’t work as the plot window was
created from scratch for each call. For non-overlapping plot and command
console windows, try the Tile command under the Window menu.

47

(assuming you start in Form=0),

READ/’0,0,0,Y,X’ filename Reads the 5" col as X, 4" col as Y

READ/’000YX’ filename same as above

READ/’,,,Y,X’ filename same as above

READ/0/°0,S,Y,X’ filename Reads the 2"¢ col as S, 4t ol as X,
37 col as Y

In form=5 (auto format), Splat! can read in up to nine columns
of numbers. Splat! will find the first row of numbers in the first file
it opens, and read in that number of columns for each data point.
This data is stored in the C1 to C9 data array. The number of points
in the C1 to C9 array is called M, while the number of data columns
used is called C. If you have no existing zys data when you read in
with auto format, then Splat! copies as many columns as possible
(1 to 3) into zys vectors, and sets the format to the appropriate
value. For example, suppose you have a file with seven columns of
data called lots.dat. The command READ/5 lots.dat will cause
Splat! to read the seven columns of data into C1 through C7. Then
Splat! will copy C1 into X, C2 into Y and C3 into S. Finally, Splat!
will change the format to form 4 (zys format).

Form=6 (multi column) is a user unfriendly way to read data into
the column data. To use form 6, you must also set the number of
columns to read with SET C=n. All n ‘columns’ need not be on the
same line. Splat! will start reading the next line to fill in all the
columns.

REGRESS[/D, /ADD, /NL, /nl:n2]

Performs a linear regression on the zy data (i.e., y(z) = a + bz),
and calculated Pearson’s correlation coefficient r.> In addition to
a standard least squares fit (identical to that obtained from FIT
POLY=1), a ‘robust’ fit that minimizes the absolute deviation rather
that x? is also calculated [7]. If form=4, REGRESS also does
a weighted least squares fit (the other two fits do not use the s-
values). By default a 1-segment line for each fit is also created,
this can be disabled with the /NL option. The default z.;, and

5Valid r-values range between —1 and +1, with a value of zero corresponding
to uncorrelated data.

48

Tmax limits for the line segments are ‘nice’ rounded version of the
true x-limits, use the /D option to force the limits to that of the
data. These lines replace any existing lines unless the /ADD option
is used.

SET[/LINE] N=expression

Set the number of data points (N) using some expression. With the
/LINE option, you can alter the number of line segments. Some
examples:

SET N=12 set the number of data points to 12 (regardless
of current N)

SET N=N+6 add 6 data points (same as MAKE 6)

SET N=N/2 cut the number of existing data points in half

SET N=Nx2 double the number of existing data points

SET M=8 set the number of column data points to 8

SET/LINE N=N/2 cut the number of existing line segments in half

The expression is evaluated the same as with CALC and MATH,
so you can use all the wacky functions you want. The finally re-
sult is rounded to the nearest integer. SET is a much more robust
version of MAKE. MAKE nsize is equivalent to SET N=N+nsize.

SET is also used to control the column data variables, M and C.
M is the number of data points stored in the column array. C is the
number of columns that contain data. The value M can be used in
any expression (i.e. with SET, MATH, the range option /n1:n2),
but C can not.

SHOW
List data on screen. (Same as LIST)

SMOOTH][/G or /M| window

Smooths the y data without changing the number of data points.
There are two smoothing functions. The default choice (/G) is to
convolute the data with a Gaussian width FWHM=window (i.e.
Ynew () = y(z) x G(z)). The other choice (/M) is to use a rolling
median of width equal to window. While smooth does not change
the number of data points, it does sort the data.

49

If in xyz-mode (form 7), the convolution is applied to z = f(xy)
along both the z-axis and y-axis using the same width window. If
you only want to smooth one coordinate, or if the x- and y-axes
have different natural length scales, you need to use MATH to
rescale the axes before smoothing. For example, suppose the step
size between points is 0.1 along the xz-axes and 10 along the y-axes
and you want to smooth over ~3 points along each axes. This
can be done using the following three commands: MATH Y=Y/100
(to temporarily make Ay ~ 0.1), SMOOTH 0.3, MATH Y=Y*100 (to
restore y-scale).

Splat! trick

If the z-point spacing is irregular, but you always want
to smooth over a constant number of points (rather than
a constant interval), temporarily replace X with I. For
example, MATH C9=X (temporarily store the X values in
C9), MATH X=I (label X by point number), SMOOTH 5
(smooth over ~5 points), MATH X=C9 (restore X values).

The number of computer steps required to smooth data scales
as N2. For large data sets, this can take a long time. To prevent
you from thinking Splat! has crashed, a progress bar is displayed.

SORT[/D] [variablel

Sorts the data in ascending order either using the default variable,
or the optional variable parameter. Use the /D qualifier to sort
in descending order.

STAT [/n1:n2] [variable]

Statistics (average, mean, min, max. ..) on a single variable (either
the default variable or the optional variable). If in form 2 or form
4, the S vector is used to find the weighted mean.

SWAP [/n1:n2,/LINE] varl=var2

Interchanges two columns of data specified by varl & var2. For
example, to swap the roles of the x & y vectors, use SWAP X=Y or
SWAP X,Y.varl & var2 can be any of the standard choices of X,Y,S
(or Z), and C1-C9.

50

WRITE([/n1:n2,/LINE, /FORM=num,!] filename

Writes data out to a file (standard ASCII text file). If the I_CLOBBER
value in the SPLAT.INI file is set to one, the program will check to
see if you are overwriting a file. If a file exists, it allows you to abort
the write. The ! option over-rides this over-write protection. Use
/LINE to write out the line data to a file. The /FORM=num option
allows you to change the user format before writing.

YO
Hands out a worthless nugget of wisdom. Type YOYO for twice the
fun, or Y0! for even more ‘advice’.

o1

Chapter 4

Installation & Setup

Splat! comes in multiple varieties: a 16-bit DOS version, two 32-bit
Windows versions, and a Linux version. The DOS version works
fine with the various Windows operating systems, it just runs in its
own DOS/command prompt process. See chart below.

Table 4.1: Compatibility of different Splat! versions with various
operating systems.

Operating DOS Windows Splat! Windows Splat!

System Splat! (Full Screen) (Menu version)
DOS Yes No No
Windows 95/98 Yes No Yes
Windows XP Yes Yes Yes
Windows Vista/7 No Yes Yes

Unfortunately there is no handy installation utility for Splat!,
so it requires a bit of work to set it up properly. The following sub-
sections describe how to set up each different version of Splat! with
different operating systems. The last two sections (4.5 and 4.6) de-
scribe how to describe to configure how Splat! operate (common to
all versions) using the splat.ini initialization/configuration file.

92

4.1 Windows (32bit)
Pull down menu version

[Running_ fnput pending in Spiatt Consale

Figure 4.1: Windows XP / 2000 / 95 / 98 / Vista / Windows 7

4.1.1 Installation

The Windows version of Splat! only needs two files:

SPLAT.EXE
SPLAT.INI

Copy these two files! to a directory such as C:\Program Files\Splat
or C:\SPLAT.

The executable should be in a directory listed in your path
statement. The SPLAT.INI file is optional, but is used to set some
common user options. To use the .INI file you must also define a
SPLAT environment variable.

Windows XP/2000/Vista/7 You add the path and environ-
mental variable via the System control panel. Click on the ”Ad-
vanced” tab, then press the ”Environment Variables...” button.
While this example is illustrated using Win XP, the Vista and Win7

1Sometimes the .EXE file is named SPLAT32.EXE to distinguish it from the
DOS version of Splat!.

93

versions are fairly similar. For example, to get to the same point in
Win7: go to Control Panel > System and Security > System, and
then choose Advanced system settings, Environmental Variables.

Ot - © - 3| P yriees |3 & X 9 |-

pddress | [Control Pansl “ B

FaddHerdwar] [ygemRestors | AuomsiclUpdaes | Remote

Eacdorremol [Genel | ComputerMame | Hanare | Advenced
4 Administrative
W avtomaticUn] | You must be logged on as an Administrator to make mest of thes shangss
PDste and Tim

Environment Variables.

QND " Performance: User variables for Owner

isplay

By oo Visual effects. processor scheduing, memory usage, and vitual memory — T

EFonts Spiat. < \progra~Lsplat)

B Game Contro TP CilDocuments and Settings Duner ...
B oo ™ C:\Documents end Settings\OwnerlLox. .
9]nbﬁmet Optd User Profiles

@aKeyhoard Desktop settings related to your logon

@Mers Burnigf

& nietiork Con Edit User Variable
GietnorkSetd | sty and Recovey o

Bephione znd System startup, systemfaire, and debugaing fomation CERS

EPortable Medi

omspec Varizble name: spat
“BPouer Optio FP_NO_HOST_C... N
privers and R 0P Variable values]

os

goem
Drezpizyer Environmert Vanables Eror Reporing

@ Regional and TER T

System variables

T
i

[scheduied Ta|

B z

@, sounds and —

3¢ speech Change settings for text-to-speech and for speech recagnition (i installed)

taSymantec LiveUpdate This applet allows you to configure your LiveUpdate settings.

Wsisen See information about your computer system, and change settings for hardware, performance, and sutomatic updatss,

[Taskbar and Start Menu Customize the Start Menu and the taskbar, such 2s the types of items to be displayed and how they should appear.

B ucer Accounts Change user account settings and passwords for peaple who share this computer, o
@ Uindowss Firewall Configure the Windows Firewal

=

Seeinformation about your computer system, and change settings for hardware, performance, and automatic updates.

74 start £ Control Pandl

Let us assume you have put the two files in C: \Program Files\Splat,
in the top User Variables part hit the ‘New...’ button. , type in
SPLAT for the name of the new variable and set the value to the
Splat! directory. Note that this variable should end with a “\’. It
is also required to use the short 8 character path name for the
directory, thus for example the value is C:\Progra~1\Splat\.

Edit User Variable 7%

Variahle name: | Splat |

Variable value; | c:'progra~1lsplat!, |

[CK ,H_ Cancel]

It is also advisable (but not required) to add Splat! to your
path. In the System Variables section (the lower portion of the En-
vironmental Variables window), select Path and click the ‘Edit. ..’

54

button. Append the Splat! directory to the existing Path variable.
For the path value, do not include the trailing ‘\’.

Edit System Variable ?X

Variable name: i_l-:‘:aﬂ'u i

Variable value: | oot \System32\Whem;c: \progra~ 1isplat |

CK][Cancel]

Windows 95/98 To set environmental variables in Windows 9x,
you edit the AUTOEXEC.BAT file. For example, if Splat! is in the
C:\SPLAT directory you would have something like:

PATH=C:\D0S;C:\WINDOWS;C:\SPLAT
SET SPLAT=C:\SPLAT\

Note the extra ‘\’ in the SPLAT variable versus the PATH variable.

4.1.2 Running the Program

Splat! can be run just like any other windows program, i.e.: (i)
enter Splat in the Run...box, (i) click on the Splat! program
icon, or (iii) create a shortcut to the program (by right clicking on
the program and selecting create program shortcut), and put a copy
on your desktop, or in your Start menu, whatever you want. You
can Drag and drop files onto the program icon. While the windows
version of Splat! supports long filenames in general, command line
arguments (for some reason) get converted to DOS compatible 8.3
style filenames. This applies to drag and drop files. If you create
a shortcut, it may be worthwhile to edit its properties and change
the ‘Start In’ directory to something short and sweet like C: or
C:\temp.

One of the most useful ways to run Splat! is to place a Shortcut
to Splat! in the Send To folder. In Windows XP (etc...) this folder
is located somewhere like
C:\Documents and Settings\User\Send To.

In Win7, the directory is something like,

%)

Users\name\AppData\Roaming\Microsoft\Windows\SendTo.?

In Windows 95/98 this folder is located in C:\Windows\Send To.
You can then send files directly to Splat! by right clicking on them
in Explorer.

®% sample data

Fie Edit View Favorites Tools Help [~
Q- @ F Psaar ‘\Q roders | [y (37 X 6) [~
Folders X | Name Size | Type Date Modfied +
[Desktop a| B softtxt 1KB TextDocument 8/29/2007 10:46 PM
= () My Documents (| B hard.txt 1KB TextDocument 8/29/2007 10:46 PM
) boss [cecay. cat 2KB DATFie 8/31/2007 11:21 AM
(5D Corel User Files NZJ-\.dal 1KB DAT Fie 8/31/2007 11:33 AM
£ desktops 1KB DATFie 8/31/2007 10:56 AM
& matt_mri = 2KB DAT File B/31/2007 11:12 AM
&) media ST 268 DATFle 8/31/2007 11:26 AM
& @) My Music 2 Open With... 1KB DATFie 8/31/2007 12:06 PM
© papers 205 < IEETCHN (1 Conpressed (zpped) Foider S/EL/2070 118 A
) to defete Xe_3pB.c ; 8/31/2007 11:44 AM
B B Wodos cut [Desktop (create shortcut)
) met_xenon Copy (2} My Documents
B & spiat Creste Shortaut B Notepad
il -
® £ Thuack R
B £ ¥e Energy levels 2 Wordpad
Propertes

= B My Computer 3 DVDRW Drive (E1)
B % Local Disk (¢:)
© 2 Bunde
5 £ Documents and settings
& Administrator
& 3 Al users
¥ () Default User
£ Localservice
& () networkservice
© onner
® [fortran
© tnstal
&) Intel
& () Program Fies

) RECYQLER
B & reviaxa
i) Storage
[System Volume Information
B) Temp 3

24, start € Windows Media Player \% spiat_sendto.bmp-P... | % Corel WordPerfect-[... | B Control Panel % sample data

4.1.3 Issues/Bugs

Splat! was written as a command line program in the days of stones
knives and bear skins. As a result, trying to run Splat! as a pull-
down, menu-driven, Windows program is going to have some prob-
lems. Here are a few:

1. Long Filenames
Splat! can read in long filenames of up to 70 characters (in-
cluding the path). But Splat! can only save files in the “old-
school” 8.3 character format. Note that the 70 character limit
can cause serious problems with long Windows-XP directories
of the form C:\DOCUMENTS AND SETTINGS\OWNER\MY DOCUMENTS\...

2Note that by default AppData is a hidden directory.

96

4.2

which eats up around 50 of the 70 possible characters. This
difficulty can be easily overcome by using directories with
short names.

Menu/Keyboard problems

The pull down menus in the Windows version look nice, but
on some Win-XP systems some menu items don’t work (most
importantly Open...). Another problem on some systems
is that accessing the menus causes the keyboard to lock up.
General advice is not to use the menus, you don’t really need
them any ways.

Plot Window problems

When the color depth is too high (millions of colors / high /
32 bits), the windows Splat! interface may not read the dis-
play resolution settings correctly, so an empty plot window
appears. To fix this, you can either right click on SPLAT.EXE,
then select Properties, under the compatibility tab check the
”Run in 256 color” mode; or you can lower the Color Quality
of your display to (medium / 16 bit / thousands of colors).
The first option causes weird pallet re-mapping effects, the
second lowers the color quality of your display for all pro-
grams. I can’t tell too big a difference between the medium
and high color depths, but you might. ..

Hand1eTEMPORARY files

On Windows 9x systems, Hand1eTEMPORARY files get left be-
hind when Splat! closes. An annoyance, but not a real prob-
lem.

Windows (32bit)
Full Screen version

4.2.1 Installation

The full screen Windows version of Splat! also only uses two files:

SPLAT.EXE
SPLAT.INI

o7

Figure 4.2: Windows XP /Vista /7

Copy these two files? to a directory such as C:\Program Files\Splat
or C:\SPLAT, and follow the installation instructions in Sec. 4.1.1.
Note, however, that it may not be necessary to define a SPLAT envi-
ronment variable to use an .INI file, as this version of Splat! Will
also look in the working directory for a version of Splat.ini.

Windows XP /Vista/7 Warning

If the color depth is too high (>16 bit in Win XP) or
if you are using Win7, the first time you run Splat!,
you may not see anything. Or more specifically, you
may get a blank screen. Under Win7 the program also
crashes, while under WinXP, the program keeps running
but you can’t see anything (if so, quit the program by
typing EXIT). This can be fixed by right clicking on
SPLAT.EXE, choosing Properties, and under the Com-
patibility tab choosing “Run in 256 colors”.

3Sometimes the .EXE file is named SPLATx.EXE to distinguish it from the
DOS version of Splat!.

98

4.2.2 Running the Program

See Sec. 4.1.2 for numerous ways to run Splat! including: the run
box, the command line, drag and dropping files, and using the right
click Send To option.

While technically a Windows program, the full screen Windows
version of Splat! is functionally closer to the DOS command line
version. Nevertheless, it does have a few Windows-like capabilities
built into it. For example, Notepad is used to EDIT files instead of
the DOS editor. Also, if READ (or WRITE) is entered without a
filename, if you press <enter> at the _filename: prompt, a dialog
box will appear allowing you to specify a filename.

4.2.3 Issues with Windows XP /Vista/7

Here are few issues that have arisen with using the Windows full
screen version of Splat! with Win XP and Win7. See also issues
with long filenames discussed in Sec. 4.1.3.

1. Blank Screen of Death / Issues with Color Depth
When you first start up Splat!, you may see only a blank
screen, this is caused by issues with the color depth of the
display being more than the primitive graphics drives Splat!
uses. See note on page 58 on how to resolve this. Under
Windows XP, you can also fix this by using lower the Color
Depth/ Quality of your display to (medium / 16 bit / thou-
sands of colors).

2. Missing text at the ends of lines

Depending on the screen resolution, sometimes a few char-
acters will go missing at the end of each line of output and
not show up on screen. Annoying, but the characters will
reappear as soon as the cursor position reaches the bottom
of the screen. As a result, this is most noticeable when ei-
ther (a) you first start up Splat! (and the cursor is near the
top of the screen), or (b) after a PLOT command when the
cursor is generally about half-way down the screen. By us-
ing a larger default plot size (i.e. in the SPLAT.INI file set
PLOT_MODE_DEF = ’/SIZE=2’) you can get the cursor to the
bottom of the screen a bit faster.

99

3. Floating point errors crash the computer
While floating point errors (such as dividing by zero) causes
all versions of Splat! to crash, when using Windows 7, this
may also cause the computer to go into some sort of hiber-
nation/shutdown mode. Splat! attempts to ‘trap’ floating
point exceptions and crash gracefully, but this doesn’t always
appear to work correctly.* Sorry.

4.3 DOS (16bit) version

Loaded macro command: Bpc
Loaded macro command: Bion

delcome to SPLAT!
Uersion 4.5 -PC 1.1

f ormat = auto form
variable:

reading data from ==xFile_Listsse

C:~TEMP~SOFT . TRT
C:~\TEMP~HARD.TXT

Figure 4.3: DOS / Windows 3.1, 95/95/Me/2000/XP

The DOS version of Splat! might be more properly called Splat!
in ‘full screen’ mode, for DOS and early versions of Windows. As
a result, instructions are included for running this version of Splat!
in Windows XP (etc...) as well as with legacy DOS computers.
For later versions of Windows (Vista/7/...), use the ‘full screen’
Windows version of Splat! as described in Sec. 4.2 .

4.3.1 Installation
The DOS version of Splat! requires the following files:

4This may have to do with running multiple programs at once on a dual-core
machine. So it is best to be running Splat! alone if you plan on dividing by
Zero.

60

SPLAT.EXE
DOSXMSF .EXE or DOSXNT.EXE
HPSPLAT.BAT or HPSPLAT.EXE
SPLAT.INI

All the executables should be located in a directory listed in your
path statement. The HPSPLAT files are not required unless you want
to automatically process HPGL plot output. The .INT file is also
optional, but is used to set some common user options and is highly
recommended. To use the .INI file you must also create a SPLAT
environment variable. For DOS and early versions of Windows
(3.1,95, 98) this is done with settings in the AUTOEXEC.BAT file.
For example, if Splat! is in the C:\SPLAT directory you would have
something like:

PATH=C:\DOS;C:\WINDOWS;C:\SPLAT
SET SPLAT=C:\SPLAT\

Note the extra ‘\’ required at the end of the SPLAT variable ver-
sus the PATH value. In later versions of Windows (XP / 2000) the
path and environment variable are setup differently. For these OS
follow the directions under the Windows Splat! installation (sec-
tion 4.1.1).°

Configuring the Plot mode
Before using Splat! on a regular basis, it is worthwhile to opti-
mize the screen resolution used for plotting. The default plot mode
for Splat! is a very low resolution mode, a much better resolu-
tion setting may work better with your computer. To find out,
create some sample data in Splat! (or read in the sample.dat
file included in the distribution file). Now try out various plot
modes (see the PLOT entry in section 3 for all possible options);
i.e. PLOT, PLOT/m=640, PLOT/m=1024,. .. ‘Bad’ plot modes manifest
themselves in many possible ways: you may see nothing,% the screen
may freak out, only the text axis labels are displayed, only the data
is displayed (with no labels), etc. ..

Once you find a ‘good’ plot mode edit the SPLAT.INTI file to
use this choice as the default plot mode. The first few lines of the
SPLAT. INTI file should look something like this,

5But note that for the DOS version of Splat! you must add Splat! to your
path.

6Hitting <return> should fix things up by returning the display to text
mode.

61

&DEFAULTS
PLOT_MODE_DEF = ’/M=SVGA’ :

Simply replace the ‘M=SVGA’ in the above example with what works
best for your computer.

4.3.2 Running the Program

While in DOS the only way to start Splat! is with the command
line, there are a number of ways to start up DOS Splat! under
Windows as described in Sec. 4.1.2. Before turning to the later, let
us briefly examine some of the options of the former.

Splat! allows a few possible command line arguments. In par-
ticular, you can set the default form and variable, and specify a
filename to read in. For example,

SPLAT/FORM=3/VAR=Y STUFF.DAT

This starts Splat! up in data format 3 (xy), with Y as the default
variable, and immediately reads in file STUFF.DAT. There is little
reason to pre-specify the format since Splat!’s auto-format capabil-
ity should handle this for you. The filename could include wildcards
(*,7), or could be replaced by a list of files separated by spaces. For
example, SPLAT SOME.DAT MORE.DAT or SPLAT ARGON_x*.DAT.

To use the DOS version of Splat! with Windows, we first want
to create a shortcut to the program. From Explorer right click on
the Splat! shortcut and chose properties. Under the Screen Tab,
select Full Screen mode. Under the program tab, check the ‘close
on exit’ box. You may want to change the ‘Starts in’ directory to
something simple. It, is also nice to change the Splat! icon. Click
the ‘change icon...” button, and browse to the Splat! directory.
Select the Splat! icon, or find your own icon for Splat!. You should
now have a Windows shortcut to Splat!; put a copy on your desktop,
in the Send To folder, or in your Start menu, whatever you want
(see Sec. 4.1.2 for more detailed instructions).

Note that the DOS version of Splat! uses the DOS 8.3 style
filename.ext form for filenames, and generally can not read in
long filenames. However, by either dragging & dropping files onto
the Splat! program icon, or by using the Send To method, you can
read in long filenames, but you are still limited to 8.3 filenames on
output. Send To can also be used to select multiple files at once to

62

be read into Splat!, but the number of files is limited by the length
of the full path names.

4.3.3 Simultaneous Use of DOS Splat! and
Windows Splat!

Can’t make up your mind? Do you want to run both the 16bit
and 32bit versions of Splat! on the same computer? Or both the
menu driven and full screen command line 32bit Windows versions
of Splat!? No problem. Set up the DOS (or full screen Windows)
version of Splat! as described here. Rename the pull-down menu
driven Windows Splat! program something like WinSplat.exe or
Splat32.exe and copy it into the Splat! directory. You could also
rename the DOS/full screen version, but you are more likely to
access the DOS version directly from the command line where the
program name makes a difference versus a Windows shortcut that
can be labeled whatever you like. Both versions can use the same
.INI configuration file.

4.4 Linux version

4.4.1 Installation

The Linux version of Splat! uses the following files:

splat Splat! program file
hp2xx HPGL file viewer program (Optional)
~.splat.ini default program values (Optional)

All the executables should be in a directory listed in your path
statement (such as /usr/bin/). The .splat.ini file is optional,
but is used to set some common user options. It is generally a
hidden file in your home directory. Typical values for the files
contents are:

&DEFAULTS
PLOT_MODE_DEF
IFORM_DEF

|
[e)]

63

IVAR_DEF =1

I_MARKER =1
I_CLOBBER =1
HP_PLOT = ’hp2xx -q’
HP_PRINT1= ’hp2xx -q’
HP_PRINT2= ’; 1s’

The default plot method for the Linux version of Splat! is to create
an HPGL output file and then hope the user has some way of dis-
playing it, i.e. hp2xx (which you need to supply). Check the hp2xx
documentation for further help on that program’s parameters and
qualifiers. Splat!’s printer output also relies on hp2xx. The output
HPGL filename is sandwiched between the user defined HP_PRINTn
commands. For example, the following settings produce output on
a LaserJet printer:

HP_PRINT1 = ’hp2xx -q -c11111 -m pcl -i -
F -f- -050’

HP_PRINT2 = ’> | lpr’

For these settings, a PLOT/PRINT command corresponds to a Linux
command line of

hp2xx -q -c11111 -m pcl -i -F -f- -050

SPLAT1.HPG | 1lpr

Alternatively, the only other plot mode under Linux is the old text-

based system (see example p. 20). To set this as the default plot
mode set PLOT_MODE_DEF = °’/TEXT’.

4.4.2 Running the Program

Splat! allows a few possible command line arguments. In particular,
you can set the default form and variable, and specify a filename
to read in. For example,

splat -form=3 -var=Y Stuff.dat

This starts Splat! up in data format 3 (zy), with Y as the default
variable, and immediately reads in file Stuff.dat. The filename
could include wildcards (*,?), or could be replaced by a list of files
separated by spaces. For example,

splat -form=3 some.dat more.data

64

4.5 SPLAT.INI Configuration File

The SPLAT.INI file contains two things, (1) the default start-up
mode information for Splat! and (2) macro definitions. The macro
functions are described in section 4.6. As for the default start-up
mode stuff, you do not absolutely need an .INI file since Splat!
has up to three sets of default parameters for most options. These
sources are (in order of precedence):

1. Splat!s own internal defaults

2. SPLAT.INTI values

3. Values supplied on the command line (i.e. SPLAT/FORM=3)
4. Splat! Command qualifiers (i.e. PLOT/M=VGA, or FORM 4)

Nonetheless, the .INI file is the only way to turn on/off the marker
function (for automatic generation/management of marks and la-
bels), the control of file overwrite protection, and define macros.

The exact contents of the SPLAT.INI file depend upon what
operating system you are using. The SPLAT.INI file distributed
with your particular version of Splat! contains lists of all valid values
for the setting for your system.

For the DOS/Windows version of Splat!, typical SPLAT. INI con-
tents and meanings are:

&DEFAULTS Required header

PLOT_MODE_DEF=’/M=SVGA’> Sets the default plot mode, see PLOT

IFORM_DEF = 3 Sets the default data format see
FORM entry in section 3

IVAR_DEF =1 Sets the default variable see FORM
I_MARKER =1 Set to 1 to automatically plot each
data file read in with a new symbol,
0 for same symbol
I_CLOBBER = 1 Set to 1 to check for overwriting output

files, 0 to allow overwriting without
checking

The PLOT_MODE_DEF option is appended onto every PLOT com-
mand. It is typically used to set the display resolution for the DOS

65

version of Splat!. However, any valid PLOT options can be spec-
ified. For example, if you always want a plot legend, you can set
it to /LEG/M-SVGA. Or under the full screen Windows version of
Splat!, if you want plots to be 75% larger than the default size, set
PLOT_MODE_DEF=’/SIZE=1.75".

4.6 Macro Commands

Up to ten command macros can be defined in the SPLAT.INI file.
Each macro can be composed of up to 20 Splat! commands.” A
macro command is accessed in Splat! by typing

O@macro_name [parameter]

at the Splat! prompt. All macro names must start with a @. One
optional parameter is allowed. The macro definition block in the
SPLAT.INT file is of the following form:

@macro_name the macro name

3 number of Splat! statements in the macro
statement 1 Splat! commands...

statement 2

statement 3

Anytime a ‘%1%’ appears in the macro statements the user supplied
parameter is substituted (if provided). For example, suppose you
want a macro that creates a ten point (xy) data set for a user
supplied function on the interval from 0 to 1. In the SPLAT.INI
this would be defined as

&MACRO

Omakeit

5

form 3

set n=10

label user function: %1%
math x=(i-1)/9

math y=%1%

/

720 is more a recommendation than a firm limit. Up to 30 commands may
be allowed.

66

To use this macro command to create values for sin(z) one would
enter @makeit sin(x) at the Splat! prompt. The sample SPLAT. INI
file included in the Splat! distribution package contains a slightly
more advanced version of this macro that uses relative indexing and
adds the 30 point user function to the existing data set (without
erasing any existing data as in the previous macro):

Omakeit

5

form 3

make 30

label user function: %1%
math/j/n-30+1: x=(i-1)/(30-1)
math/j/n-30+1: y=%1%

Macro calls can be nested (one macro invokes another macro),
but not recursive.

67

Appendix A

Technical Details

Splat! is written in Fortran 77 (using many DEC VAX extensions).!

The original version of Splat! ran on a microVAX before being
ported to PC computers. Most of the numerical processing rou-
tines (sorting, fitting, etc...) wused by Splat! are adapted from
those in Numerical Recipes [7]. The equation parsing system used
by the MATH command is heavily adapted from ‘Lexical Analy-
sis” example from Chap. 10 of FORTRAN 77 for Engineers and
Scientists[6)].

A.1 Averaging

To illustrate what is going on with Splat!’s AVERAGE command,
let us consider the sample data illustrated in Fig. A.1. The plot is a
histogram of 279 individual measurements.? The average of all the
measurements is equal to 17.4. The standard deviation (o) of the
measurements is 10.5. Indeed, if the measurements are averaged (in
form=3) with AVG/SD, and then listed (after switching to form=4)
this is the listed error S. Note, however, that by default AVG will

1With the exception of a few Windows interface routines written in Fortran-
90.

2In this context, (A-B) is equal to difference in counts that accumulates in
two counters (A & B) over 20 seconds. The A counter collects signal while
an electron beam simultaneously ionizes/excites Ar ground state atom to the
the Art (4d2P1/2) level, while the B counter accumulates background counts
while the electron beam is off. Negative (A-B) counts are possible if the signal
counting rate is not much larger than the background counting rate.

68

20

r~ T T T TrrTTT

- ' 279 points 1
o [117406 AVG]
S5t ' 17.4£105 AVG/SD
5 I | 17.0£05 AVG/D]
% L A7 median |
310} 1]
o !]
— L | J
© [| 1
ot ;]
Q 5t !]
£ - 'outliers? outlier 1
= L ‘]
z | N3 -

I il 1111 I | I

0
20 -10 0 10 20 30 40 50 60 70 80 90
(A-B) counts

Figure A.1: Histogram of photon counting signal for the
Art(4d?Py /o —>4p2P(1’/2) transition (330.73 nm) measured at an
incident electron energy of ~90 eV. (Raw data used to produce
cross section values in Ref. [2].)

produce a much smaller uncertainty value of £0.6. By default,
Splat! lists the error in the mean (or standard error) which is equal
to 0/v/N where N is the number of measurements. Considering the
large size of N, the N~ factor significantly reduces the standard
error from the standard deviation.

The standard deviation can be thought of an estimate of the
expected variability of the next independent measurement of the
quantity of interest. So if there had been a 280" measurement,
it most probably would have fallen in the range of 7 to 27. On
the other hand, this one additional measurement when added to
the previous 279 measurements, would hardly change the mean
value of 17.4. In contrast, the error in the mean is the expected
uncertainty in the mean value which has accumulated from the 279
measurements. If we repeated a similar set of 279 measurements,
the mean of this new set would be expected to be within about +0.6
of 17.4. By default Splat! assumes the error bar you are interested in
is the uncertainty in the mean, rather than the uncertainty expected

69

in an individual measurement (i.e. the standard deviation).

Being real data taken in a real world, the measured distribu-
tion in Fig. A.1 does not exactly match the smooth Gaussian curve
obtained from probability theory. While most of the values cluster
around the range of 0-40, the single value at 81 stands out as anom-
alously large. While this single value may be some sort of statistical
fluke, it is far more likely the result of an experimental glitch- elec-
trical noise picked up in one counter channel more than the other as
someone turned on a piece of heavy machinery in a room nearby.?
It would be nice to exclude this ‘obviously wrong’ data point from
our statistical analysis of the remaining points. But what about
the two points around 507 Or the point at -147 All of these points
stand out in comparison to the smooth Gaussian curve, but don’t
seem that off from nearby points that aren’t in question. To take
the human judgement /bias out of this process, Splat! includes the
built in /DISCARD option. With the /DISCARD option, Splat! does
two rounds of statistical analysis. In the first round it calculates
the standard deviation and median value. Since half of the data
points have a value larger than the median, and half have a value
less than the median, a few outliers/bad points don’t shift the me-
dian value all that much. As a result, it is a robust indicator of the
mean value even in the presence of a few ‘bad points’.# If a point
lies more than 2.5 standard deviations from the median value, it
is considered ‘bad’ and excluded from the second round where the
mean and revised standard deviation are calculated for the ‘good’
points. Without any bad points, this criteria is expected to throw
away about 1% of ‘good’ points that just happen to lie at the edges
of the normal distribution. For the example data in Fig. A.1 these
limits are shown as the vertical dashed lines at -9 and +43. A total
of 5 points are excluded by AVG/D, four on the right side of the
distribution, and one on the left side. This shifts the mean value
down slightly to 17.0 = 0.5.

For averaging with error bars (form=4, xys-mode), Splat! cal-
culates the average via [1]

Yove = Zz(yl/512>
e /s

3Stray cosmic rays are also a common excuse.

4The mean value, however, can be thrown off significantly by a single bad
point that differs from the true mean by a large amount. See the example on
p- 23.

(A1)

70

with the uncertainty in the average value equal to

sy:1/m. (A.2)

Splat! averages y-values for all points at the ‘same’ z-value. To
allow for numerical round off errors, Splat! actually averages all
points together within z-axis bins of width dz. Unless specified
by the user (via the AVG delta_x qualifier), Splat! uses a default
value of dx = 0.0001 . The z-value associated with the averaged y
values is obtained by taking the average of the x-values within the
acceptable window. Note that this procedure can sometimes pro-
duce an unexpected result. Imagine you have four points at = =
1.0000, 1.0001, 1.0002, and 2.0000. You might expect to end up
with two averaged points at 1.0001 and 2.0000, but Splat! would
instead find only the first two points within the default 0.0001 win-
dow of the first z-value; and as a result, Splat! would produced
three averaged values at x = 1.00005, 1.0002, and 2.0000. To over-
come this difficult, for this particular pathological case, one could
either use something like AVG 0.1, or MATH X=NINT(X) and then
AVG. While both methods would produce two averaged xy values,
the z-coordinates for the first point would be slightly different in
the two cases: 1.0001 for the former, 1.0000 for the latter.

Table A.1: Effect of AVG command under different circumstances.
The chart does not include the effects of binning or discarding
data. In this context, N represent the number of data points
with the same z-value that are being averaged together. Note:

(y) =N"'3 g, and of = (N=1)7" 37 (yi — (y))*.

Format command X Y SorZ
(ry) form=3 AVG x <y> o, /VN
(xy) form=3 AVG/SD T <y> oy

(yi/s?) ~1/2
(xys) form=4 AVG x % [>,(1/s3)] /
(xyz) form=7 AVG x Yy <z>

71

A.2 Smoothing

Splat! can smooth either zy data or xyz data using one of two
smoothing options: a rolling median or a Gaussian window. Note
that for smoothing purposes zys data is treated the same as zy
data as the error bars (s) are neglected in the smoothing process.
Associated with each of the smooth functions is a scale length A
(either the width of a sliding window or a Gaussian FWHM). For
zy data this scale length is compared with the z-distance between
each pair of data points via |z; —;|. For xys data the scale length
is compared to \/(z; — ;)% + (y; — y;)?. The two smoothing func-
tions are illustrated using the xy scheme, but are the essentially
the same for xyz data with y replaced with z and |x; — x;| replaced

with \/(.’BZ — ij)Q + (yz — yj)Q

Rolling Median For each point 4, create the set Y,¢ which con-
sists of the y;-values of all points with |z; — z;|] < A. Then
yi™ = median(Y;).

Gaussian Converting the supplied Gaussian FWHM into an ex-
ponential scale factor aa,

AQ
T 4n(2) (A.3)
We compute,
S y.e—(wi—wj)"’/aa
) (v) (A.4)

S N e

As a last step in both cases, Splat! copies yi™ into y;.

A.3 Fitting

Fitting entails minimizing the difference between a set of experi-
mental y(x) values and those derived from a trial function yg(x; a1, as, . . .)
by varying the fitting parameters a1, as, ... [1, 7]. The ‘difference’
between the experimental values and the trial values is defined to

72

be x?,

N Ty — (zi;01,a ar)]?
Xzzz[yz Yue\Ti; a1, a2, ..., AK : (A.5)
i=1

;i

where o; is the uncertainty in y; (set to one in xy form=3). This is
called the method of least squares fitting. The number of degrees of
freedom is equal to the number of data points N minus the number
of extracted parameters K. To be a well posed problem, you must
have at least as many data points as parameters.

The extracted parameters will each have some uncertainty o (ax)
associated with them. Mathematically,

o2(ay,) = zN:af (Z‘;’;)Q . (A.6)

i=1

The details of how this all works can be found in Ref. [7]. Since
o(ay) depends on the uncertainties o; in the experimental y;-values,
the o(ay) error estimates are only as valid as the o; error estimates
(i.e. you must be in form=4 for them to have ‘real’ meaning). Tech-
nically, the o%(ay) values are the variances in the set of fitted para-
meters ar. There also covariance terms that relate the uncertainty
in a; to ay (etc...).> If you are interested in the full covariance
matrix, you are out of luck- Splat! only reports the variance terms.

If the trial function is composed of a series of basis functions
X (x) such that it can be written as a linear combination of the
basis functions,

K
yas(x; a1, ag,...) = Zaka(m)) (A7)
k=1

we have the case of linear least squares fitting. Barring some numer-
ical processing details, a linear least squares fit always works, i.e. it
provides the unique set of parameters ai,as,...,ax that have the
global minimum of x2. If the fitting function is not a linear func-
tion of the parameters ay, the method of non-linear least squares

5For example, consider fitting a straight line y = ax + b to a set of data.
For the minimum slope within the uncertainty range, a — o4, the fit can be
somewhat improved by increasing the offset b to b + db. This change in b with
a variation in a results in a covariance (cross talk) between the values of the
slope and the offset.

73

fitting is used. This method has two serious drawbacks: first, the
final solution is not guaranteed to be the global minimum of x2,
but only a local minimum. Second, to better our odds of finding
the global minimum we need fairly good starting guesses for the
values of the parameters a.

As far as using Splat’s FIT function, you don’t see a difference
between linear and non-linear fitting. For non-linear fits, Splat! fig-
ures out the initial guessing of the parameters. unfortunately, these
guesses don’t always lead to the global minimum in x2. Sometimes
Splat! fails to find a good fit because of the ‘rules’ it uses to guess
initial parameters don’t work well with your particular data set.
In these cases, you may be able to nudge Splat! along by tweaking
your zy data to better match its expectations. Here are Splat!’s
rules for initial guesses.

(z—ay)
Exponential rise Y = ag {1 e m }
ap : aysmtopic val. y-value of last point, yn
ay : offset x-value of first point x
as : rise-time first z-value that exceeds (ag/2), minus

the z-offset a;

Gaussian peak Y = ag e—(@—a1)*/ a3
ap : peak height maximum y-value (Ymax)
ay : peak location z-value corresponding to Ymax
as : peak width 2(a1 — ®Tmp), where x,,, is the first point

where the y-value exceeds (ag/2)

Gaussian with bkg. Yy = ag e~(z=a1)’ /a3 4 as
ag : peak height maximum y-value (Ymax)
ay : peak location z-value corresponding to Ymax
as : peak width 2(a1 — Tmp), where z,,, is the first point
where the y-value exceeds (ag/2)
az : background averg. of first & last y-values, (y1+yn)/2

74

Asymmetric Gaussian

[(%)2(w)2}

Yy=ape + as

with background
agp : peak height
ay : peak location
as : peak width

asz : background
aq @ asymmetry

maximum y-value (Ymax)

z-value corresponding t0 Ymax

2(a1 — Tmp), where x,,, is the first point
where the y-value exceeds (ag/2)

averg. of first & last y-values, (y1+yn)/2
0. (assume symmetric Gaussian)

Morse Potential

Yy = ag [1 —e ™ ($_“2)]2 + a3

ag : dissoc. energy

ap: 3
as : equilib. radius
as : offset energy

difference of the maximum & minimum
y‘VahleS (ymax - ymin)

fixed value of 1.5

z-value corresponding to Ymin
minimum y-value (Ymin)

Maxwell-Boltzmann

_ 2 1 —xz/a
y*ﬁaoﬁa?ﬁe fan

ag : density

4 X Ymax X z-value corresponding to Ymax

a; : temperature 2 x x-value corresponding to Ymax
_ 1 1 ,—0.2432%/a?
Druyvesteyn Y= 500 N e e /ai

ap : density
a; : temperature

2X Ymax X x-value corresponding t0 Ymax
z-value corresponding to Ymax

Arrhenius Form

—ao

y=apzr* e =

ap : amplitude
ay: power
as : act. energy

maximum y-value, Ymax

fixed value of 0.5

average of minimum & maximum
z-values, (Zmax + Tmax)/2

While the exponential decay function,

a1 T
y=ape"”,

(A.8)

has a non-linear dependence on aq, it can nonetheless be fit as a

(6]

linear equation. By taking the natural log of both side, we obtain
Iny =Inag + a z, (A.9)

which Splat! fits as first-order polynomial. While not a standard
Splat! fitting function, a similar trick can be used by the user to
fit y = apx®. Namely MATH Y=LN Y, MATH X=LN X, and then FIT
POLY=1, with a§’® = exp(aft).

A.4 Calculus

Most numerical analysis books have a great deal to say about var-
ious numerical methods of evaluating either the integral or deriva-
tive of a table of values of y = f(x). Unfortunately, these methods
generally assume you can evaluate f(z) at any desired z. As a re-
sult, the method generally assume the table of values consist of a
set of equally spaced z-values separated by a controllable spacing
h. This is in sharp contrast to what Splat! gets supplied with by
the user, an arbitrary list of xy values which may contain repeated
values and have large experimental uncertainties. As a result, the
routines used by Splat! are probably not the best®, but work well
enough given the circumstances.

A.4.1 Integration

Splat! first sorts the data by x, and averages all y-values at the
same z-value. This is the unweighted average even in form=4 (i.e.
error bars are ignored). Assuming there are K unique x values,

K-1

[o@rs ~ Y BRI). (A0
k

This is integration by the trapezoid rule (see for example Refs. [4,
3]). Tt is one of the least efficient/accurate methods of calculating
integrals for a fixed lattice spacing. But for potentially unequally
spaced points, and with no knowledge of the derivatives of y = f(z)

6Indeed, if you have equally spaced values for an analytically known function
you are MUCH better off evaluating your integral/derivatives by some other
means

76

this is about the best Splat! can do. The error in each portion of
the summation is equal to [3]

~S"() (rgr — w)®

By = 12

, forsome n € (zp, zp41) . (A.11)

In contrast, integration by Simpson’s rule gives an error on the
order of (xj41 — xx)° [3, 4] which is significantly better for small
spacing.

A.4.2 Derivation

In comparison to the ‘sort-of’ suitability of textbook techniques for
numerical integration (a.k.a. numerical quadrature), the standard
textbook methods for obtaining numerical derivatives (numerical
differentiation) are almost completely worthless when applied to
arbitrary data sets. The act of integration tends to average out
experimental noise in the data: the contribution from one interval
where yi, is too high, will be at least partially offset by another in-
terval in the summation where yy- is too low. This offsetting doesn’t
occur in numerical differentiation, if y is too large (by +sg), the
derivative for the interval immediately before x; will be too big, and
the derivative for the interval immediately after z; will be too small.
Both are wrong, period. Since dy/dx =~ (yx+1 — yx)/(Tk+1 — Tk),
the smaller the x-spacing the larger the noise magnification from
statistical variations in y. Even for analytical functions, numerical
roundoff errors lead to instabilities in the calculation of derivatives
as the step size is decreased [3, 4]. Things are even worse for the
second derivative.

If you have an analytical function, you are MUCH better off
evaluating the derivative analytically, or by a method other than
Splat!. With this caveat/warning aside, Splat! calculates the deriv-
ative at point x; by fitting a second order polynomial to the y-data
in the interval around x;, and extracting the derivative from the
slope of this fit,

Yt () . R a+bx+ca? (A.12)
o i
dy dy™ | _

Tq

7

pgoo [T T T T T T T 1 T T T T T T T T T
O y=sin[x] +-0.01
— derivative

--- second derivative

- v=D

T - - T

=

-2.000
Rilili] 5.000 10.000

Figure A.2: Sample derivatives of ‘noisy’ data, y = sin(z) + 0.01.
Compare to noiseless data in Fig. 3.1 on p. 24. Note how the noise
amplitude increases as one goes from f(x) — f'(z) — f"(x).

The fitting process should help smooth out the random statisti-
cal uncertainties in y. In form=4 (zys-mode) this fitting process
includes the known uncertainties (s) in the y-values.

In principle, this fitting procedure can be done for an interval
around each point (similar to the SMOOTH function), yielding
a unique derivative value at each x-value. I find this somewhat
intellectually dishonest (see note about smoothing on p. 20); if the
fit is over an interval of Az, you should end up with a function
with a spacing of about Axz. Unless specified by the user, Splat!
sets the default value of Az at 1% of (Zymax — Tmin). However, since
three points are required to fit a second order polynomial, Splat!
will increase effective Az range to include at least three points.

Splat! obtains the second derivative of a function by successively
taking two first derivatives. Namely, y — dy/dx — d/dx(dy/dz).
Since Splat! reduces the number of data points with each deriva-
tive, the second derivative dataset typically has less than (1/9) the
number of starting points.

78

A.5 Plotting
A.5.1 Nice Numbers

When plotting, the limits of a plot (i.e. Zimin and Tyax) are not usu-
ally the minimum and maximum of the dataset, but ‘nice’ round
numbers. For example, if the data runs from 0.3 to 8.5, the more
natural limits for the plot are probably something like 0 to 9 or
0 to 10. Commercial-quality plotting programs allow you to fine
tune whatever the program guesses these limits should be, but
Splat!’s simplicity prevents you from adjusting these limits (other
than setting them to the limits of the data with the /D option).
Splat!’s method is as follows,

data _ . data

P = 10™tallog(@inay —2inin)] (A.14)

where Intg(x) rounds down to the preceding lower integer (i.e.
Inty(1.7)=1, Int4(-1.7)=-2). P represent how many orders of mag-
nitude are cover by the data range. The plot limits are then chosen
to be,

et = Intg(xd3/P) P (A.15)
POt = nty (2922 /P 4 0.99999) P . (A.16)

To consider a couple of examples, for data ranging from 0.3 to
8.5, P =1, 2P = 0, and 2P!°t = 9. For a data range of 1.1 to 1.6,

min max

P=0.1, 2”'°° = 1.1 and zPl°t = 1.6.

min max

79

A.5.2 3D to 2D coordinate transform
A X

To convert a 3D zyz coordinate to a 2D XY coordinate to be
plotted, Splat! performs the following transformation:

X = sz x cos(f—135°)+ s, y cosd (A.17)
Y = spasin(@—135°) +s,y sinf+s,z, (A18)

where 60 is the rotation angle of the xyz coordinate system about
the z-axis (0 = 0° in the figure), and s,, s,, and s, are scale
factors. Setting s, = 1, the scale factors for the y- and z-axes are
determined by

Sy = (ymax - ymin)/(xmax - xmin) (A.19)
Sz = (Zmax - Zmin)/(xmax - xmin) . (AQO)

If s, is within £30% of 1, or s, is between 0.5 and 2, they are set
to one. Likewise, if the /D option is used, the scale factors are set
to one. For a log axis, the specified coordinate (i.e. z) is replaced
with log z before the above transformation.

A.5.3)\ —rgb conversion

Wavelength color coding is actually rather hard. Or more correctly,
accurate color coding is hard, or pretty much impossible. A mono-
chromatic light specified by a given wavelength is a ‘pure’ color, and

80

... 580nm
"=

= 600 nm

Figure A.3: A poor attempt at a 1931 CIE Chromaticity diagram
with color range of a typical computer monitor.

can not be truly reproduced by a computer monitor. To see why,
we turn to something called a a 1931 CIE chromaticity diagram.

In this representation, the wavelengths of light make up the
outer arc in Fig. A.3. The three corners of the inner triangle in the
figure correspond to the red-green-blue (RGB) colors generated by
the three phosphors in a display. The color of an individual pixel
is described by the specifying the intensity of each of these three
colors. For example, assuming a maximum intensity of 255, the
color red corresponds to an RGB value of (255,0,0); yellow, which
is an equal mix of red and green, is specified as (255,255,0). An
equal mix of all three colors produces white. Thus, by mixing the
ratios of the three colors, a computer display can represent any
color within the color triangle of Fig. A.3. Since the wavelength
spectrum falls outside of this triangle, a computer can never truly
display a wavelength of a monochromatic light source.

Things are further complicated by the fact that the human eye
doesn’t work like a spectrometer, but has three different photore-
ceptor cone cells. Each cone cell type has a different photopsin
protein that absorbs light in different parts of the spectrum. One
type is most sensitive to blue light, one to green and one to red.
Thus, the human eye converts a monochromatic light signal into a

81

weighted rgb signal that our brain interprets as a given color. If
the spectral output of the screen RGB phosphors exactly matched
the rgh response of the human eye, the color rendering of spectral
colors could be easy, but alas this is not the case.

Splat!’s spectral color mapping works as follows. First, the
wavelength A (measured in nm) is mapped to a set of relative RGB
values using,

B [(A — 447)2] (\ — 596)?
R = 0.20exp w2 | + 0.57exp - (A.21)
[(A —559)?]
_ 0 _ A= 999)7 A.22
G 0.55 exp _ 59 22 ()
_ [(A —440)?] (A — 460)2
B = 0.48exp _ 2007 | + 0.65 exp 3102 (A.23)

These values are loosely based on the CIE color matching values.
Splat! then renormalizes these values relative to the maximum of
the three coordinates,

M = Max(R,G,B) (A.24)
Ry = R/M (A.25)
Gy = G/M (A.26)
By = B/M. (A.27)

This renormalization increases the effective brightness of the color
to the maximum allowable amount. Then, the intensity is decreased
to mimic the eye’s luminous efficiency:

Ct()\) = exp[—(\ — 550)%/220%] . (A.28)

While somewhat based in reality, this function matches neither the
photopic (bright light /cone response) or scotopic (dark adapted /rod
response) sensitivity curve of the human eye[5]. The width para-
meter of the curve (220) has been stretched a bit to enhance the
response in deep blue-violet and deep red edges of the spectrum.
The Windows version of Splat! uses a value (185) a bit closer to
reality.

82

Finally, the RGB values are converted to integer values in the
computer’s binary representation. For the Microsoft Fortran com-
piler, these values take on the range of 0-63.

IR = NINT[63 x ¢;(\) X Ry] (A.29)
IG = NINT[63 x c;(\) X Gy] (A.30)
IB = NINT[63 x c;(A\) x By] . (A.31)

A.6 Evil Prevention

Splat! uses the ANSI ERP 2.3 (Evil Recognition Protocol) system
to detect when Splat! is being used for evil. If evil is detected (or
at least suspected), Splat! will then intentionally generate garbage
output in an attempt to foil your dastardly plans. It is well known,
however, that ERP 2.3 has a tendency to generate many type II
errors (believing you are up to evil when you are actually doing
good). As a result, Splat! can often give you the wrong answers for
no good reason (but with the best intentions for world peace).

83

Bibliography

[1]

2]

P. R. BEVINGTON, Data Reduction and Error Analysis for the
Physical Sciences, McGraw-Hill, New York, 1969.

J. B. BorrarD, B. CHIARO, T. WEBER, AND C. C. LIN,
Electron-impact excitation of argon: optical emission cross sec-
tions in the range 300-2500 nm, At. Data Nuc. Data Tables, 93
(2007), pp. 831-863.

S. D. ConNTE AND C. DE BOOR, Elementary Numerical
Analysis: An Algorithmic Approach, McGraw-Hill, New York,
third ed., 1980.

S. E. KoONIN AND D. C. MEREDITH, Computational Physics,
FORTRAN version, Addison-Wesley, Redwood City,CA, 1990.

J. R. MEYER-ARENDT, Introduction to Classical and Modern
Optics, Prentice-Hall, Englewood Cliff, NJ, second ed., 1984.

L. NYHOFF AND S. LEESTMA, FORTRAN 77 for Engineers
and Scientists, Macmillian, New York, 1985.

W. H. Press, B. P. FLANNERY, S. A. TEUKOLSKY, AND
W. T. VETTERLING, Numerical Recipes: The Art of Scientific
Computing (FORTRAN Version), Cambridge University Press,
Cambridge, 1989.

84

Index

$ command, 22
/n1:n2 qualifier, 13-14

ADD, 22

example, 16-17
Arrhenius form, 32, 75
asymmetric Gaussian, 30
auto format, 14-15, 34, 48
AUTOEXEC. BAT, 55, 61
AVERAGE, 11, 20, 22-23, 68—

71
discard option, 22-23, 70

bad data, 23, 70
BIN, 23
Bitmap image, 46, 47
bugs/issues, 9
FFT, 25
negative sign (-), 38
Windows version, 5657, 59—
60

CALC, 23

functions, 37-38
calculator, 23
calculus, 19
CD, 23
Chi squared (x?), 7, 33, 73
CIE diagram, 80-81
CLEAR, 23

effect on flags, 10
CLS, 24

column data, 9

exporting, 22, 40

loading from file, 14-15, 48
command

list, 14

overview, 12-21

reference, 22-51

syntax, 13
command line arguments, 62, 64,

65

command line interpreter, 89
contour plot, 44
correlation coefficient (r), 48
cosmic rays, 70

D, 19, 24
data analysis, 17-20
data creation, 16
data entry, 14-16
create from function, 16
file input, 14-15
keyboard entry, 15-16, 25
data formats, 10, 33-34
data storage
organization, 9-10
transfer commands, 17
DD, 19, 24-25
derivation, 19, 24
derivative, 24, 7778
errors in calculation of, 19,
24, 77

85

second, 24
DIR, 25
discarding bad data, 22-23, 70
DOS version
installation, 60-63
PLOT options, 45-46, 61—
62, 66
DOSXMSF, 61
DOSXNT, 61
drag and drop, 55, 62
Druyvesteyn Distrib., 31, 75

ECHO, 25
EDIT, 25
ENTER, 15, 25
environmental variable
DOS, 61
Win 7, 54
Win 9x, 55
Win XP/Vista, 53-55
error bars, 7, 8
effect of NORM on, 19, 39
effect on average, 70-71
fitting with, 33
plotting, 34, 42
viewing, 12
evil, 83
EXIT, 7, 25

Fast Fourier Transform (FFT),
20, 25

problems with, 20, 25

FFT, 20, 25

file input, see READ

FIT, 6, 18, 26-33

fitting, 6-7, 17-19, 26-33
Arrhenius form, 32, 75
Druyvesteyn, 31, 75
exponential decay, 28
exponential rise, 28, 74
exponentials, 27

Gaussian peaks, 18-19, 29—
31, 33, 74
Maxwellian, 31, 75
Morse Potential, 32, 75
polynomials, 6, 18, 26
powers, 27, 76
technical details, 72-76
tips, 18-19, 76
FORM, 33-34
auto format, 14-15, 34, 48
data formats, 10, 33-34
effect on xys data, 34
effect on READ, 15, 4748
multi-column, 15, 48
user format, 34, 4748
full screen mode
DOS version, 60
Windows version, 57-60
FWHM, 29, 30, 33, 49, 72

Gaussian Dist., 18, 19, 29-31, 33,
49
good data, 70

Hand1eTEMPORARY, 57
Hell
fourth circle of, 20
HELP, 34
HIST, 18, 35
histogram, 23, 35, 69
hp2xx, 46, 63, 64
HPGL output, 41
Linux version, 46, 64
PC versions, 45-46, 61

I_CLOBBER, 51, 65
icon, 62
I_MARKER, 21, 37, 42, 65
INCLUDE, 35
input

READ file, 14-15

keyboard entry, 15-16, 25
installation, 51-67
DOS version, 60—63
Linux version, 63-64
Windows version, 52-60
INT, 19, 35
integration, 19, 35, 76-77
internal data flags, 9-10

keyboard entry, see ENTER

LABEL, 21, 35, 37

LEGEND, 35

LINE, 17, 35-36

line array, 9

linear regression, 48

Linux version
installation, 63—64
PLOT options, 46

LIST, 11, 36

list of commands, 14

LOAD, 36

log plots, 41

long filenames, 55, 62
problems with, 56-57, 59

LS, 36

luminous efficiency, 82

Macros, 66-67
MAKE, 10, 36, 49

to create data, 16
MARK, 21, 36-37

cleared by commands, 37
MATH, 37-39

data creation, 16

data processing, 19

example uses, 39
Maxwell-Boltzmann, 31, 75
moving data, 16-17
multi-column format, 15, 48

NORM, 19, 39
examples, 39

Nuggets of wisdom
obtaining, 51

OUT, 39
overwrite protection, 65
override, 51

parameters, 13

path statement, 53, 61
DOS, 61
Win XP/Vista, 55

Pearson r-correlation coeff., 48

PLOT, 5, 2021, 4047
/NLINE= option, 37, 42
/NSET1= option, 37, 42
3D plots, 43-45, 79-80
adding a zero line, 36
contour plot, 44
HPGL output, 4546
legend for, 35, 43
PS output, 43
technical details, 78-83
text mode, 20, 43, 64

wavelength color coding, 42—

43, 80-83
plotting, see PLOT
POINT, 17, 40
PORT, 17, 40
program icon, 62
program organization, 8-12
program shortcut, 55, 62
program uses, 7—8
PS output file, 41, 43
pull down menus, 5, 57

qualifiers, 13
QUIT, 47

r (correlation) coefficient, 48

87

READ, 5, 15, 47-48

recursive subroutine, see subrou-
tine, recursive

REGRESS, 48-49

Reverse Polish Notation (RPN),
23

sample session, 4-7
second derivative, 24
Send To, 55-56, 59, 62—63
Win 7, 56
SET, 10, 36, 49
example uses, 49
to create data, 16
shortcut, 55, 62
SHOW, 49
SMOOTH, 20, 49-50
SORT, 20, 50
spawning a process, 22
SPDATA.TMP, 25
SPLAT.INI, 21, 37, 42, 46, 51,
52, 6466
DOS version, 61
Linux version, 63-64
Windows version, 53, 58
STAT, 18, 50
example, 7
subroutine
recursive, see recursive sub-
routine
SWAP, 50

<Tab>-key, 5
trapezoidal rule, 35, 76

wavelength color coding, 42, 80—
83
weighted average, 22, 70-71
wildcards, 15, 47, 62, 64
Windows
creating an env. var., 53-55

Send To, 55-56, 59, 62-63
shortcut, 55, 62
Windows version
bugs, 56-57, 59-60
compatibility with DOS ver-
sion, 63
Create from function, 16
full screen mode, 47, 57-60
installation, 52—60
plotting, 46-47
print screen, 46, 47
pull down menus, 5, 57
use of <Tab>-key, 5
WRITE, 51

zys data array, 9

YO, 51

88

